require(knitr)
require(png)
require(dplyr)
require(stringr)
require(metafor)
require(compute.es)
require(kableExtra)
require(pander)
require(ggplot2)
require(ggtext)
require(RColorBrewer)
source("src/acoustic_indices_functions.R")
This web page is a detailed description of the procedures followed to conduct the systematic review and meta-analysis published in Biological Reviews. Our aim was to evaluate the performance of the commonly used acoustic indices as proxies for biodiversity. The repository used to create this document can be found here: https://github.com/irene-alcocer/Acoustic-Indices
Figures and tables in this web page, follows the numbering used in the manuscript and supplementary material.
We extensively searched existing literature for studies assessing the use of acoustic indices as proxies for biodiversity. The systematic search proceeded as follows:
Both peer-reviewed and no peer-reviewed studies were included to avoid publication bias.
After removing all duplicates, we gathered a total of 1,079 studies.(See Figure 2 in manuscript).
We considered studies eligible for meta-analysis if they met the following inclusion criteria:
Following such inclusion criteria, we screened all selected studies (n = 1,079) based on their abstract, titles and keywords and thereby retaining 142 studies which were identified as potentially eligible. To ascertain their relevance, we conducted a full-text assessment on all of these studies, finally retaining 35 studies that passed through all the criteria.
::include_graphics("rmd/Fig.S1.png") knitr
Figure 3 - Temporal evolution (2007–2019) of validation data from a total of 142 articles. Articles that correlate the acoustic indices with real biological data are represented by an orange line and studies that did not correlate acoustic indices with such data are shown with a green line.
Main extracted data
For each study:
Handling of pseudoreplication
To account for differences in sampling effort among studies and to support the detection of cases of pseudoreplication (i.e., inadequate specification of the number of independent observations when applying statistical analysis) that might potentially lead to biased statistical tests, we extensively assessed the sampling design and statistics of each study. We identified eight features that summarized both spatial and temporal sampling and statistical tests of all the selected articles. When a mismatch between sample size and the number of true replicates was identified, we classified the analysis as using inflated replication and used true replicates as our sample size for meta-analysis (see Methods- Sampling design and pseudoreplication in the manuscript).
Table S3 - List of the 34 features used to characterise studies that tested the relationship between acoustic indices and diversity metrics.
<- c(5, 4, 4, 4, 6, 11)
feature_rows <- c("Publication", "Biological data", "Acoustic data", "Recording",
categories "Sampling design", "Statistics")
<- c("Authors", "Title", "Journal", "Year of publication", "Peer reviewed",
features "Environment", "Taxonomic group", "Diversity metric", "Diversity source",
"Acoustic index", "Frequency range", "FFT size", "Noise treatment",
"Sampling rate", "Audio format", "Recording length", "Recording method",
"Study sites", "Distance between sites", "Recorders per site", "Recording days",
"Daily period", "Daily sample",
"Statistical test", "Independence", "R${^2}$", "r", "b", "t-statistic",
"Standard error", "Sample size", "Pseudoreplication", "Pseudoreplication type",
"Adjusted sample size")
<- c("", "", "", "", "Whether the study was subjected to peer review (Yes or No)")
descript_publ <- c("Ecosystem type where recordings were collected (aquatic or terrestrial)",
descript_bio_data "Primary studied group (invertebrates, fish, anurans, mammals, birds, or several)",
"Species abundance, species richness, species diversity, abundance of sounds, or diversity of sounds",
"Method applied to obtain the diversity metric (acoustic or non-acoustic)")
<- c("ACI, AEI, ADI, AR, BIO, H, Ht, Hf, M, NP, or NSDI",
descript_acous_data "Range (in Hz) used for index calculation",
"Window size of the Fast Fourier Transformation (FFT)",
"Audio pre-processing related to noise (noise filtering, noise addition, or exclusion of noisy recordings)")
<- c("Number of audio samples per second (in kHz) used for index calculation",
descript_rec "Format of audio files (.wav, .mp3, etc.)",
"Length of each recording (in seconds) used for index calculation",
"Non-programmed (continuous), programmed (periodic) or manual (by an operator)")
<- c("Number of study sites (= spatial replicates)",
descript_sampling "Minimum distance between study sites (in meters)",
"Number of recording units per study site",
"Number of recording days per study site (= temporal replicates)",
"Period recorded within the day (dawn, morning, midday, evening, dusk, night, or all day)",
"Number of recordings collected within a day per study site")
<- c("Statistical analysis used to test the relationship between acoustic indices and diversity metrics",
descript_stats "Whether the statistical test was considered independent from other tests of the same study ",
"Coefficient of determination (for regression analysis)",
"Correlation coefficient (for Pearson or Spearman correlation)",
"Regression coefficient (for linear regression analysis)",
"Statistic value for Student’s t-test",
"Standard error of the test coefficient",
"Number of observations included in the statistical test",
"Inadequate specification of the number of true replicates in the statistical test (Yes or No)",
"Spatial, temporal, or spatial-temporal pseudoreplication",
"Suitable specification of the number of true replicates (for pseudoreplicated studies)")
<- c(descript_publ, descript_bio_data, descript_acous_data,
descriptions
descript_rec, descript_sampling, descript_stats)<- data.frame(Category = rep(categories, feature_rows),
features_tbl Features = features,
Description = descriptions)
kbl(features_tbl, format = "html") %>%
#kable_styling(latex_options = c("scale_down", "HOLD_position")) %>%
row_spec(0, font_size = 16, bold = TRUE) %>%
column_spec(1, bold = TRUE) %>%
column_spec(2, extra_css = 'vertical-align: top !important;') %>%
row_spec(c(1:5, 10:13, 18:23), background = "#eeeeee") %>%
collapse_rows(columns = 1, valign = "top") %>%
kable_classic()
Category | Features | Description |
---|---|---|
Publication | Authors | |
Title | ||
Journal | ||
Year of publication | ||
Peer reviewed | Whether the study was subjected to peer review (Yes or No) | |
Biological data | Environment | Ecosystem type where recordings were collected (aquatic or terrestrial) |
Taxonomic group | Primary studied group (invertebrates, fish, anurans, mammals, birds, or several) | |
Diversity metric | Species abundance, species richness, species diversity, abundance of sounds, or diversity of sounds | |
Diversity source | Method applied to obtain the diversity metric (acoustic or non-acoustic) | |
Acoustic data | Acoustic index | ACI, AEI, ADI, AR, BIO, H, Ht, Hf, M, NP, or NSDI |
Frequency range | Range (in Hz) used for index calculation | |
FFT size | Window size of the Fast Fourier Transformation (FFT) | |
Noise treatment | Audio pre-processing related to noise (noise filtering, noise addition, or exclusion of noisy recordings) | |
Recording | Sampling rate | Number of audio samples per second (in kHz) used for index calculation |
Audio format | Format of audio files (.wav, .mp3, etc.) | |
Recording length | Length of each recording (in seconds) used for index calculation | |
Recording method | Non-programmed (continuous), programmed (periodic) or manual (by an operator) | |
Sampling design | Study sites | Number of study sites (= spatial replicates) |
Distance between sites | Minimum distance between study sites (in meters) | |
Recorders per site | Number of recording units per study site | |
Recording days | Number of recording days per study site (= temporal replicates) | |
Daily period | Period recorded within the day (dawn, morning, midday, evening, dusk, night, or all day) | |
Daily sample | Number of recordings collected within a day per study site | |
Statistics | Statistical test | Statistical analysis used to test the relationship between acoustic indices and diversity metrics |
Independence | Whether the statistical test was considered independent from other tests of the same study | |
R\({^2}\) | Coefficient of determination (for regression analysis) | |
r | Correlation coefficient (for Pearson or Spearman correlation) | |
b | Regression coefficient (for linear regression analysis) | |
t-statistic | Statistic value for Student’s t-test | |
Standard error | Standard error of the test coefficient | |
Sample size | Number of observations included in the statistical test | |
Pseudoreplication | Inadequate specification of the number of true replicates in the statistical test (Yes or No) | |
Pseudoreplication type | Spatial, temporal, or spatial-temporal pseudoreplication | |
Adjusted sample size | Suitable specification of the number of true replicates (for pseudoreplicated studies) |
We used Pearson’s correlation coefficient (r), as our measure of effect size. The effect size describes the direction and magnitude of the relationship between acoustic indices and diversity metrics.
When Pearson’s correlation, r, was not reported, we extracted other statistics, using the following precedence: Spearman’s correlation, t-values, F-values, linear regression slope coefficients and R². When only graphical information was available, we extracted the statistics with Web Plot Digitizer v4.2. (Rohatgi, 2019) and computed Pearson correlations. We converted all statistics to r, using compute.es package in R (Del Re & Del Re, 2012) or when the package did not provide the needed functions we followed the formulas provided in Nakagawa & Cuthill (2007) and Koricheva, Gurevitch, & Mengersen (2013).
We converted our effect size r to Fisher’s Z in order to satisfy the normality assumption of parametric meta-analysis (Nakagawa & Cuthill, 2007). Fisher’s Z values were converted back to r, to ease interpretation of results.
We collected a total of 481 effect sizes from 35 studies. For the meta-analysis, these number was reduced to 364 effect sizes and 34 studies, after computing composite effect sizes between non-independent effect sizes and removing a study due to difficulty in describing the study design. For the literature review, we kept the original 35 studies.
<- read.csv("data/Table.S1.csv")
df_raw <- "n_adjusted"
n_used # Use n_adjusted as sample size
<- tidy_data(df_raw, n_used) df_tidy
## Removed study id
## 54
## Dataframe aggregated from 481 to 364 entries
# Studies database
<- read.csv("data/Table.S2.csv")
studies <- merge(df_tidy, studies, by.x = "id", by.y = "ID", all.x = TRUE)
df_tidy <- df_tidy %>%
df_tidy mutate(authors = paste(Authors, year)) %>%
select(id, entry, authors, everything(), -Publ_year, -Title,
-doi, -Authors)
Table S1 - Data set used in the study.
kable(df_tidy, format = "html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
scroll_box(height = "400px", width = "100%")
id | entry | authors | year | impact_factor | index | taxa | environ | bio | diversity_source | pseudoreplication | n | z | var | Journal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 15 | Desjonquères et al. 2015 | 2015 | 2.180 | ACI | invertebrates | A | sound_abundance | acoustic | YES | 4 | 0.3285000 | 0.7500000 | PeerJ |
2 | 16 | Desjonquères et al. 2015 | 2015 | 2.180 | ACI | invertebrates | A | sound_richness | acoustic | YES | 4 | 0.3322500 | 0.7500000 | PeerJ |
2 | 17 | Desjonquères et al. 2015 | 2015 | 2.180 | AR | invertebrates | A | sound_abundance | acoustic | YES | 4 | 0.0692000 | 0.7500000 | PeerJ |
2 | 18 | Desjonquères et al. 2015 | 2015 | 2.180 | AR | invertebrates | A | sound_richness | acoustic | YES | 4 | 0.0851500 | 0.7500000 | PeerJ |
2 | 19 | Desjonquères et al. 2015 | 2015 | 2.180 | Hf | invertebrates | A | sound_abundance | acoustic | YES | 4 | -0.1851000 | 0.7500000 | PeerJ |
2 | 20 | Desjonquères et al. 2015 | 2015 | 2.180 | Hf | invertebrates | A | sound_richness | acoustic | YES | 4 | -0.1304000 | 0.7500000 | PeerJ |
2 | 21 | Desjonquères et al. 2015 | 2015 | 2.180 | Ht | invertebrates | A | sound_abundance | acoustic | YES | 4 | -0.3286500 | 0.7500000 | PeerJ |
2 | 22 | Desjonquères et al. 2015 | 2015 | 2.180 | Ht | invertebrates | A | sound_richness | acoustic | YES | 4 | -0.2970000 | 0.7500000 | PeerJ |
2 | 23 | Desjonquères et al. 2015 | 2015 | 2.180 | M | invertebrates | A | sound_abundance | acoustic | YES | 4 | 0.3453000 | 0.7500000 | PeerJ |
2 | 24 | Desjonquères et al. 2015 | 2015 | 2.180 | M | invertebrates | A | sound_richness | acoustic | YES | 4 | 0.3043500 | 0.7500000 | PeerJ |
2 | 25 | Desjonquères et al. 2015 | 2015 | 2.180 | NP | invertebrates | A | sound_abundance | acoustic | YES | 4 | 0.2074500 | 0.7500000 | PeerJ |
2 | 26 | Desjonquères et al. 2015 | 2015 | 2.180 | NP | invertebrates | A | sound_richness | acoustic | YES | 4 | 0.1851000 | 0.7500000 | PeerJ |
4 | 13 | Parks et al. 2014 | 2014 | 1.730 | H | mammals | A | sound_abundance | acoustic | YES | 4 | 0.2801000 | 0.7500000 | Ecol. Inform. |
6 | 1 | Boelman et al. 2007 | 2007 | 3.570 | BIO | birds | T | abundance | no_acoustic | NO | 8 | 1.5047000 | 0.2000000 | Ecol. Apli. |
9 | 44 | Harris et al. 2016 | 2016 | 5.710 | ACI | fish | A | diversity | no_acoustic | NO | 9 | 1.0278500 | 0.1250250 | Methods Ecol. Evol. |
9 | 45 | Harris et al. 2016 | 2016 | 5.710 | ACI | fish | A | richness | no_acoustic | NO | 9 | 0.2877000 | 0.1667000 | Methods Ecol. Evol. |
9 | 46 | Harris et al. 2016 | 2016 | 5.710 | AR | fish | A | diversity | no_acoustic | NO | 9 | 0.2104000 | 0.1250250 | Methods Ecol. Evol. |
9 | 47 | Harris et al. 2016 | 2016 | 5.710 | AR | fish | A | richness | no_acoustic | NO | 9 | 0.5361000 | 0.1667000 | Methods Ecol. Evol. |
9 | 48 | Harris et al. 2016 | 2016 | 5.710 | H | fish | A | diversity | no_acoustic | NO | 9 | 0.3258625 | 0.0937688 | Methods Ecol. Evol. |
9 | 49 | Harris et al. 2016 | 2016 | 5.710 | H | fish | A | richness | no_acoustic | NO | 9 | 0.6448500 | 0.1041875 | Methods Ecol. Evol. |
10 | 38 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.1003000 | 0.0303000 | Sci Rep |
10 | 39 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.0000000 | 0.0303000 | Sci Rep |
10 | 170 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.8291000 | 0.0303000 | Sci Rep |
10 | 171 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.1717000 | 0.0303000 | Sci Rep |
10 | 228 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 1.2562000 | 0.0303000 | Sci Rep |
10 | 229 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.2132000 | 0.0303000 | Sci Rep |
10 | 276 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.9076000 | 0.0303000 | Sci Rep |
10 | 277 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.1923000 | 0.0303000 | Sci Rep |
10 | 300 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.1206000 | 0.0303000 | Sci Rep |
10 | 301 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.2554000 | 0.0303000 | Sci Rep |
10 | 311 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.0500000 | 0.0303000 | Sci Rep |
10 | 312 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.2769000 | 0.0303000 | Sci Rep |
10 | 326 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.3428000 | 0.0303000 | Sci Rep |
10 | 327 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.8673000 | 0.0303000 | Sci Rep |
10 | 339 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.3205000 | 0.0303000 | Sci Rep |
10 | 340 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 1.0454000 | 0.0303000 | Sci Rep |
10 | 350 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.3769000 | 0.0303000 | Sci Rep |
10 | 351 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 1.0203000 | 0.0303000 | Sci Rep |
10 | 361 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.2237000 | 0.0303000 | Sci Rep |
10 | 362 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.9287000 | 0.0303000 | Sci Rep |
10 | 363 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | fish | A | sound_abundance | acoustic | NO | 36 | 0.3428000 | 0.0303000 | Sci Rep |
10 | 364 | Buscaino et al. 2016 | 2016 | 4.259 | ACI | invertebrates | A | sound_abundance | acoustic | NO | 36 | 0.7582000 | 0.0303000 | Sci Rep |
11 | 40 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | abundance | no_acoustic | NO | 8 | -0.1262000 | 0.1500000 | Sci Rep |
11 | 41 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | diversity | no_acoustic | NO | 8 | 1.0328000 | 0.2000000 | Sci Rep |
11 | 42 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | richness | no_acoustic | NO | 8 | 0.8821000 | 0.1500000 | Sci Rep |
11 | 172 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | abundance | no_acoustic | NO | 8 | 0.3009000 | 0.1500000 | Sci Rep |
11 | 173 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | diversity | no_acoustic | NO | 8 | 0.4181000 | 0.2000000 | Sci Rep |
11 | 174 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | richness | no_acoustic | NO | 8 | 1.1245500 | 0.1500000 | Sci Rep |
11 | 230 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | abundance | no_acoustic | NO | 8 | -0.1797000 | 0.1500000 | Sci Rep |
11 | 231 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | diversity | no_acoustic | NO | 8 | 0.8429000 | 0.2000000 | Sci Rep |
11 | 232 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | richness | no_acoustic | NO | 8 | 0.6372500 | 0.1500000 | Sci Rep |
11 | 278 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | abundance | no_acoustic | NO | 8 | -0.0471500 | 0.1500000 | Sci Rep |
11 | 279 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | diversity | no_acoustic | NO | 8 | 0.6747000 | 0.2000000 | Sci Rep |
11 | 280 | Bertucci et al. 2016 | 2016 | 4.260 | ACI | fish | A | richness | no_acoustic | NO | 8 | 0.6980000 | 0.1500000 | Sci Rep |
13 | 11 | McWilliam & Hawkin 2013 | 2013 | 2.480 | ACI | invertebrates | A | sound_abundance | acoustic | YES | 5 | 1.1881000 | 0.5000000 | J. ExpMar. Biol. Ecol |
13 | 12 | McWilliam & Hawkin 2013 | 2013 | 2.480 | ADI | invertebrates | A | sound_abundance | acoustic | YES | 5 | 1.3331000 | 0.5000000 | J. ExpMar. Biol. Ecol |
14 | 34 | Wa Maina et al. 2016 | 2016 | 1.220 | ACI | birds | T | richness | acoustic | NO | 8 | 0.1689000 | 0.2000000 | BDJ |
14 | 35 | Wa Maina et al. 2016 | 2016 | 1.220 | ACI | birds | T | richness | no_acoustic | NO | 8 | 0.9638000 | 0.2000000 | BDJ |
14 | 36 | Wa Maina et al. 2016 | 2016 | 1.220 | H | birds | T | richness | acoustic | NO | 8 | 0.4676000 | 0.2000000 | BDJ |
14 | 37 | Wa Maina et al. 2016 | 2016 | 1.220 | H | birds | T | richness | no_acoustic | NO | 8 | 0.5870000 | 0.2000000 | BDJ |
15 | 43 | Roca & Proulx 2016 | 2016 | 4.810 | H | invertebrates | T | richness | acoustic | NO | 4 | 1.8972000 | 1.0000000 | Ecology |
15 | 175 | Roca & Proulx 2016 | 2016 | 4.810 | H | invertebrates | T | richness | acoustic | NO | 4 | 2.6467000 | 1.0000000 | Ecology |
15 | 233 | Roca & Proulx 2016 | 2016 | 4.810 | H | invertebrates | T | richness | acoustic | NO | 4 | 2.3796000 | 1.0000000 | Ecology |
17 | 14 | Zhang et al. 2015 | 2015 | 0.000 | ACI | birds | T | richness | acoustic | YES | 4 | 0.3940000 | 1.0000000 | IEEE.Conference.procedings |
37 | 33 | Picciulin et al. 2016 | 2016 | 0.000 | ACI | fish | A | sound_abundance | acoustic | YES | 4 | 0.3260000 | 1.0000000 | Proceedings of Meetings on Acoustics |
41 | 3 | Paisley-Jones 2011 | 2011 | 0.000 | H | birds | T | sound_abundance | acoustic | NO | 6 | 0.1481000 | 0.3333000 | thesis |
41 | 4 | Paisley-Jones 2011 | 2011 | 0.000 | H | invertebrates | T | diversity | no_acoustic | NO | 6 | -0.1430000 | 0.3333000 | thesis |
44 | 86 | Machado et al. 2017 | 2017 | 4.994 | ADI | birds | T | richness | acoustic | NO | 30 | 0.4910000 | 0.0370000 | Landsc. Urban Plan. |
44 | 87 | Machado et al. 2017 | 2017 | 4.994 | NDSI | birds | T | richness | acoustic | NO | 30 | 0.1686000 | 0.0370000 | Landsc. Urban Plan. |
45 | 7 | McLaren 2012 | 2012 | 0.000 | NDSI | birds | T | diversity | no_acoustic | NO | 36 | 0.9330000 | 0.0303000 | practicum |
45 | 8 | McLaren 2012 | 2012 | 0.000 | NDSI | birds | T | richness | acoustic | NO | 36 | 0.6070000 | 0.0303000 | practicum |
45 | 9 | McLaren 2012 | 2012 | 0.000 | NDSI | birds | T | richness | no_acoustic | NO | 36 | 0.9160000 | 0.0303000 | practicum |
53 | 154 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | anurans | T | richness | acoustic | NO | 33 | 0.0000000 | 0.0333000 | Ecol. Indic. |
53 | 155 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | birds | T | richness | acoustic | NO | 33 | -0.0209000 | 0.0333000 | Ecol. Indic. |
53 | 156 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | anurans | T | richness | acoustic | NO | 33 | 0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 157 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | birds | T | richness | acoustic | NO | 33 | -0.3237000 | 0.0333000 | Ecol. Indic. |
53 | 158 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | anurans | T | richness | acoustic | NO | 33 | -0.2122000 | 0.0333000 | Ecol. Indic. |
53 | 159 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | birds | T | richness | acoustic | NO | 33 | 0.3237000 | 0.0333000 | Ecol. Indic. |
53 | 160 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | anurans | T | richness | acoustic | NO | 33 | 0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 161 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | birds | T | richness | acoustic | NO | 33 | -0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 162 | Moreno-Gomez 2019 | 2019 | 4.490 | H | anurans | T | richness | acoustic | NO | 33 | 0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 163 | Moreno-Gomez 2019 | 2019 | 4.490 | H | birds | T | richness | acoustic | NO | 33 | -0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 164 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | anurans | T | richness | acoustic | NO | 33 | -0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 165 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | birds | T | richness | acoustic | NO | 33 | 0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 166 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | anurans | T | richness | acoustic | NO | 33 | 0.1051000 | 0.0333000 | Ecol. Indic. |
53 | 167 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | birds | T | richness | acoustic | NO | 33 | -0.3237000 | 0.0333000 | Ecol. Indic. |
53 | 214 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | anurans | T | richness | acoustic | NO | 11 | -0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 215 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | birds | T | richness | acoustic | NO | 11 | 0.3237000 | 0.1250000 | Ecol. Indic. |
53 | 216 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | anurans | T | richness | acoustic | NO | 11 | 0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 217 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | birds | T | richness | acoustic | NO | 11 | -0.2122000 | 0.1250000 | Ecol. Indic. |
53 | 218 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | anurans | T | richness | acoustic | NO | 11 | -0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 219 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | birds | T | richness | acoustic | NO | 11 | 0.3237000 | 0.1250000 | Ecol. Indic. |
53 | 220 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | anurans | T | richness | acoustic | NO | 11 | -0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 221 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | birds | T | richness | acoustic | NO | 11 | 0.2122000 | 0.1250000 | Ecol. Indic. |
53 | 222 | Moreno-Gomez 2019 | 2019 | 4.490 | H | anurans | T | richness | acoustic | NO | 11 | 0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 223 | Moreno-Gomez 2019 | 2019 | 4.490 | H | birds | T | richness | acoustic | NO | 11 | -0.3237000 | 0.1250000 | Ecol. Indic. |
53 | 224 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | anurans | T | richness | acoustic | NO | 11 | -0.0105000 | 0.1250000 | Ecol. Indic. |
53 | 225 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | birds | T | richness | acoustic | NO | 11 | -0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 226 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | anurans | T | richness | acoustic | NO | 11 | 0.1051000 | 0.1250000 | Ecol. Indic. |
53 | 227 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | birds | T | richness | acoustic | NO | 11 | -0.4426000 | 0.1250000 | Ecol. Indic. |
53 | 262 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | anurans | T | richness | acoustic | NO | 32 | 0.1051000 | 0.0345000 | Ecol. Indic. |
53 | 263 | Moreno-Gomez 2019 | 2019 | 4.490 | ACI | birds | T | richness | acoustic | NO | 32 | 0.5731000 | 0.0345000 | Ecol. Indic. |
53 | 264 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | anurans | T | richness | acoustic | NO | 32 | 0.1051000 | 0.0345000 | Ecol. Indic. |
53 | 265 | Moreno-Gomez 2019 | 2019 | 4.490 | ADI | birds | T | richness | acoustic | NO | 32 | -0.1051000 | 0.0345000 | Ecol. Indic. |
53 | 266 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | anurans | T | richness | acoustic | NO | 32 | -0.1051000 | 0.0345000 | Ecol. Indic. |
53 | 267 | Moreno-Gomez 2019 | 2019 | 4.490 | AEI | birds | T | richness | acoustic | NO | 32 | 0.2122000 | 0.0345000 | Ecol. Indic. |
53 | 268 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | anurans | T | richness | acoustic | NO | 32 | -0.2122000 | 0.0345000 | Ecol. Indic. |
53 | 269 | Moreno-Gomez 2019 | 2019 | 4.490 | BIO | birds | T | richness | acoustic | NO | 32 | 0.3237000 | 0.0345000 | Ecol. Indic. |
53 | 270 | Moreno-Gomez 2019 | 2019 | 4.490 | H | anurans | T | richness | acoustic | NO | 32 | 0.0105000 | 0.0345000 | Ecol. Indic. |
53 | 271 | Moreno-Gomez 2019 | 2019 | 4.490 | H | birds | T | richness | acoustic | NO | 32 | 0.3237000 | 0.0345000 | Ecol. Indic. |
53 | 272 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | anurans | T | richness | acoustic | NO | 32 | 0.0000000 | 0.0345000 | Ecol. Indic. |
53 | 273 | Moreno-Gomez 2019 | 2019 | 4.490 | Hf | birds | T | richness | acoustic | NO | 32 | 0.3237000 | 0.0345000 | Ecol. Indic. |
53 | 274 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | anurans | T | richness | acoustic | NO | 32 | 0.0105000 | 0.0345000 | Ecol. Indic. |
53 | 275 | Moreno-Gomez 2019 | 2019 | 4.490 | Ht | birds | T | richness | acoustic | NO | 32 | -0.4426000 | 0.0345000 | Ecol. Indic. |
60 | 152 | Patrick Lyon et al. 2019 | 2019 | 2.360 | ACI | fish | A | abundance | no_acoustic | NO | 7 | -0.3654000 | 0.2500000 | Mar. Ecol.-Prog. Ser. |
60 | 153 | Patrick Lyon et al. 2019 | 2019 | 2.360 | ACI | fish | A | diversity | no_acoustic | NO | 7 | 0.1306000 | 0.1875000 | Mar. Ecol.-Prog. Ser. |
60 | 212 | Patrick Lyon et al. 2019 | 2019 | 2.360 | ACI | fish | A | abundance | no_acoustic | NO | 7 | 0.5763000 | 0.2500000 | Mar. Ecol.-Prog. Ser. |
60 | 213 | Patrick Lyon et al. 2019 | 2019 | 2.360 | ACI | fish | A | diversity | no_acoustic | NO | 7 | 0.4313500 | 0.1875000 | Mar. Ecol.-Prog. Ser. |
70 | 94 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | NO | 9 | -0.2232000 | 0.1250250 | Sci Rep |
70 | 95 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_richness | acoustic | NO | 9 | 0.6011000 | 0.1667000 | Sci Rep |
70 | 199 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | NO | 4 | 0.0262000 | 1.0000000 | Sci Rep |
70 | 200 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | NO | 9 | 0.6011000 | 0.1667000 | Sci Rep |
70 | 201 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | NO | 10 | 0.4676000 | 0.1429000 | Sci Rep |
70 | 202 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_richness | acoustic | NO | 9 | 0.1051000 | 0.1667000 | Sci Rep |
70 | 203 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_richness | acoustic | NO | 10 | 0.4931000 | 0.1429000 | Sci Rep |
70 | 256 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | NO | 9 | 0.8244000 | 0.1667000 | Sci Rep |
70 | 257 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_richness | acoustic | NO | 9 | 1.2973000 | 0.1667000 | Sci Rep |
70 | 294 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_abundance | acoustic | YES | 25 | 0.3422714 | 0.0260000 | Sci Rep |
70 | 295 | Bolgan et al. 2018 | 2018 | 4.010 | ACI | fish | A | sound_richness | acoustic | YES | 25 | 0.2930143 | 0.0260000 | Sci Rep |
77 | 71 | Fairbrass et al. 2017 | 2017 | 3.980 | ACI | several | T | richness | acoustic | NO | 105 | 0.8513000 | 0.0099000 | Ecol. Indic. |
77 | 80 | Fairbrass et al. 2017 | 2017 | 3.980 | BIO | several | T | richness | acoustic | NO | 105 | 0.4545000 | 0.0099000 | Ecol. Indic. |
77 | 85 | Fairbrass et al. 2017 | 2017 | 3.980 | NDSI | several | T | richness | acoustic | NO | 105 | 0.4320000 | 0.0099000 | Ecol. Indic. |
77 | 186 | Fairbrass et al. 2017 | 2017 | 3.980 | ADI | several | T | richness | acoustic | NO | 105 | 0.1968000 | 0.0099000 | Ecol. Indic. |
80 | 62 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | abundance | no_acoustic | NO | 4 | -0.1203000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 63 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | diversity | no_acoustic | NO | 4 | 0.0000000 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 64 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | richness | no_acoustic | NO | 4 | -0.2158000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 65 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | abundance | no_acoustic | NO | 4 | 0.4060667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 66 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | diversity | no_acoustic | NO | 4 | -0.1586500 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 67 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | richness | no_acoustic | NO | 4 | 0.3178667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 176 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | abundance | no_acoustic | NO | 4 | 0.0335667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 177 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | diversity | no_acoustic | NO | 4 | 0.1990500 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 178 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | richness | no_acoustic | NO | 4 | 0.0357000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 179 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | abundance | no_acoustic | NO | 4 | 0.4564000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 180 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | diversity | no_acoustic | NO | 4 | -0.2144000 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 181 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | richness | no_acoustic | NO | 4 | 0.4316333 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 234 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | abundance | no_acoustic | NO | 4 | 0.0357000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 235 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | diversity | no_acoustic | NO | 4 | -0.2144000 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 236 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | richness | no_acoustic | NO | 4 | -0.3736000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 237 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | abundance | no_acoustic | NO | 4 | 0.2231333 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 238 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | diversity | no_acoustic | NO | 4 | 0.1093000 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 239 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | richness | no_acoustic | NO | 4 | 0.0417667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 281 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | abundance | no_acoustic | NO | 4 | 0.0357000 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 282 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | diversity | no_acoustic | NO | 4 | -0.1586500 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 283 | Staaterman et al. 2017 | 2017 | 2.280 | ACI | fish | A | richness | no_acoustic | NO | 4 | -0.3385667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 284 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | abundance | no_acoustic | NO | 4 | 0.2231333 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
80 | 285 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | diversity | no_acoustic | NO | 4 | -0.1061000 | 0.7500000 | Mar. Ecol.-Prog. Ser. |
80 | 286 | Staaterman et al. 2017 | 2017 | 2.280 | H | fish | A | richness | no_acoustic | NO | 4 | 0.2055667 | 0.6666667 | Mar. Ecol.-Prog. Ser. |
86 | 92 | Indraswari et al. 2018 | 2018 | 3.400 | ACI | anurans | T | sound_abundance | acoustic | YES | 33 | 0.6284000 | 0.0333000 | Freshw. Biol. |
86 | 93 | Indraswari et al. 2018 | 2018 | 3.400 | Ht | anurans | T | sound_abundance | acoustic | YES | 33 | 0.6948000 | 0.0333000 | Freshw. Biol. |
86 | 197 | Indraswari et al. 2018 | 2018 | 3.400 | ACI | anurans | T | sound_abundance | acoustic | YES | 33 | 0.3773000 | 0.0333000 | Freshw. Biol. |
86 | 198 | Indraswari et al. 2018 | 2018 | 3.400 | Ht | anurans | T | sound_abundance | acoustic | YES | 33 | 0.4426000 | 0.0333000 | Freshw. Biol. |
86 | 254 | Indraswari et al. 2018 | 2018 | 3.400 | ACI | anurans | T | sound_abundance | acoustic | YES | 33 | 0.2617000 | 0.0333000 | Freshw. Biol. |
86 | 255 | Indraswari et al. 2018 | 2018 | 3.400 | Ht | anurans | T | sound_abundance | acoustic | YES | 33 | 0.4880000 | 0.0333000 | Freshw. Biol. |
87 | 96 | Eldridge et al. 2018 | 2018 | 4.490 | ACI | birds | T | richness | acoustic | YES | 4 | 0.6250000 | 0.6000000 | Ecol. Indic. |
87 | 98 | Eldridge et al. 2018 | 2018 | 4.490 | ACI | birds | T | sound_abundance | acoustic | YES | 4 | 0.6507600 | 0.6000000 | Ecol. Indic. |
87 | 204 | Eldridge et al. 2018 | 2018 | 4.490 | ACI | birds | T | richness | acoustic | YES | 4 | 0.1909000 | 0.6000000 | Ecol. Indic. |
87 | 206 | Eldridge et al. 2018 | 2018 | 4.490 | ACI | several | T | sound_abundance | acoustic | YES | 4 | -0.0819200 | 0.6000000 | Ecol. Indic. |
87 | 258 | Eldridge et al. 2018 | 2018 | 4.490 | ADI | birds | T | richness | acoustic | YES | 4 | -0.7218000 | 1.0000000 | Ecol. Indic. |
87 | 259 | Eldridge et al. 2018 | 2018 | 4.490 | ADI | birds | T | sound_abundance | acoustic | YES | 4 | -0.7547000 | 1.0000000 | Ecol. Indic. |
87 | 260 | Eldridge et al. 2018 | 2018 | 4.490 | AEI | birds | T | richness | acoustic | YES | 4 | 0.5061000 | 1.0000000 | Ecol. Indic. |
87 | 261 | Eldridge et al. 2018 | 2018 | 4.490 | AEI | birds | T | sound_abundance | acoustic | YES | 4 | 0.8429000 | 1.0000000 | Ecol. Indic. |
87 | 296 | Eldridge et al. 2018 | 2018 | 4.490 | ADI | birds | T | richness | acoustic | YES | 4 | -0.2078000 | 1.0000000 | Ecol. Indic. |
87 | 297 | Eldridge et al. 2018 | 2018 | 4.490 | ADI | several | T | sound_abundance | acoustic | YES | 4 | -0.5061000 | 1.0000000 | Ecol. Indic. |
87 | 298 | Eldridge et al. 2018 | 2018 | 4.490 | AEI | birds | T | richness | acoustic | YES | 4 | 0.2100000 | 1.0000000 | Ecol. Indic. |
87 | 299 | Eldridge et al. 2018 | 2018 | 4.490 | AEI | several | T | sound_abundance | acoustic | YES | 4 | 0.5731000 | 1.0000000 | Ecol. Indic. |
87 | 309 | Eldridge et al. 2018 | 2018 | 4.490 | BIO | birds | T | richness | acoustic | YES | 4 | 0.8064000 | 1.0000000 | Ecol. Indic. |
87 | 310 | Eldridge et al. 2018 | 2018 | 4.490 | BIO | birds | T | sound_abundance | acoustic | YES | 4 | 0.9009000 | 1.0000000 | Ecol. Indic. |
87 | 320 | Eldridge et al. 2018 | 2018 | 4.490 | BIO | birds | T | richness | acoustic | YES | 4 | 0.2100000 | 1.0000000 | Ecol. Indic. |
87 | 321 | Eldridge et al. 2018 | 2018 | 4.490 | BIO | several | T | sound_abundance | acoustic | YES | 4 | 0.6446000 | 1.0000000 | Ecol. Indic. |
87 | 322 | Eldridge et al. 2018 | 2018 | 4.490 | Hf | birds | T | richness | acoustic | YES | 4 | -0.5731000 | 1.0000000 | Ecol. Indic. |
87 | 323 | Eldridge et al. 2018 | 2018 | 4.490 | Hf | birds | T | sound_abundance | acoustic | YES | 4 | -0.7218000 | 1.0000000 | Ecol. Indic. |
87 | 324 | Eldridge et al. 2018 | 2018 | 4.490 | Ht | birds | T | richness | acoustic | YES | 4 | -0.6595000 | 1.0000000 | Ecol. Indic. |
87 | 325 | Eldridge et al. 2018 | 2018 | 4.490 | Ht | birds | T | sound_abundance | acoustic | YES | 4 | -0.6902000 | 1.0000000 | Ecol. Indic. |
87 | 335 | Eldridge et al. 2018 | 2018 | 4.490 | Hf | birds | T | richness | acoustic | YES | 4 | -0.1905000 | 1.0000000 | Ecol. Indic. |
87 | 336 | Eldridge et al. 2018 | 2018 | 4.490 | Hf | several | T | sound_abundance | acoustic | YES | 4 | -0.6446000 | 1.0000000 | Ecol. Indic. |
87 | 337 | Eldridge et al. 2018 | 2018 | 4.490 | Ht | birds | T | richness | acoustic | YES | 4 | -0.1905000 | 1.0000000 | Ecol. Indic. |
87 | 338 | Eldridge et al. 2018 | 2018 | 4.490 | Ht | several | T | sound_abundance | acoustic | YES | 4 | -0.3237000 | 1.0000000 | Ecol. Indic. |
87 | 348 | Eldridge et al. 2018 | 2018 | 4.490 | NDSI | birds | T | richness | acoustic | YES | 4 | 0.3237000 | 1.0000000 | Ecol. Indic. |
87 | 349 | Eldridge et al. 2018 | 2018 | 4.490 | NDSI | birds | T | sound_abundance | acoustic | YES | 4 | 0.4303000 | 1.0000000 | Ecol. Indic. |
87 | 359 | Eldridge et al. 2018 | 2018 | 4.490 | NDSI | birds | T | richness | acoustic | YES | 4 | 0.2672000 | 1.0000000 | Ecol. Indic. |
87 | 360 | Eldridge et al. 2018 | 2018 | 4.490 | NDSI | several | T | sound_abundance | acoustic | YES | 4 | 0.4303000 | 1.0000000 | Ecol. Indic. |
89 | 50 | Gage et al. 2017 | 2017 | 1.820 | ACI | birds | T | richness | acoustic | YES | 60 | 0.6885000 | 0.0175000 | Ecol. Inform. |
89 | 51 | Gage et al. 2017 | 2017 | 1.820 | ACI | birds | T | sound_abundance | acoustic | YES | 60 | 1.4618000 | 0.0175000 | Ecol. Inform. |
89 | 52 | Gage et al. 2017 | 2017 | 1.820 | ADI | birds | T | richness | acoustic | YES | 60 | -1.8635000 | 0.0175000 | Ecol. Inform. |
89 | 53 | Gage et al. 2017 | 2017 | 1.820 | ADI | birds | T | sound_abundance | acoustic | YES | 60 | -0.8852000 | 0.0175000 | Ecol. Inform. |
89 | 54 | Gage et al. 2017 | 2017 | 1.820 | AEI | birds | T | richness | acoustic | YES | 60 | 2.2494000 | 0.0175000 | Ecol. Inform. |
89 | 55 | Gage et al. 2017 | 2017 | 1.820 | AEI | birds | T | sound_abundance | acoustic | YES | 60 | 1.0302000 | 0.0175000 | Ecol. Inform. |
89 | 56 | Gage et al. 2017 | 2017 | 1.820 | BIO | birds | T | richness | acoustic | YES | 60 | -0.6098000 | 0.0175000 | Ecol. Inform. |
89 | 57 | Gage et al. 2017 | 2017 | 1.820 | BIO | birds | T | sound_abundance | acoustic | YES | 60 | -0.0993000 | 0.0175000 | Ecol. Inform. |
89 | 58 | Gage et al. 2017 | 2017 | 1.820 | H | birds | T | richness | acoustic | YES | 60 | 1.0849000 | 0.0175000 | Ecol. Inform. |
89 | 59 | Gage et al. 2017 | 2017 | 1.820 | H | birds | T | sound_abundance | acoustic | YES | 60 | 2.4427000 | 0.0175000 | Ecol. Inform. |
89 | 60 | Gage et al. 2017 | 2017 | 1.820 | NDSI | birds | T | richness | acoustic | YES | 60 | 0.0270000 | 0.0175000 | Ecol. Inform. |
89 | 61 | Gage et al. 2017 | 2017 | 1.820 | NDSI | birds | T | sound_abundance | acoustic | YES | 60 | 0.5269000 | 0.0175000 | Ecol. Inform. |
90 | 104 | Ferreira et al. 2018 | 2018 | NA | ACI | anurans | T | sound_richness | acoustic | NO | 7 | 0.0556000 | 0.2500000 | Journal of ecoacoustics |
90 | 108 | Ferreira et al. 2018 | 2018 | NA | ACI | birds | T | sound_richness | acoustic | NO | 7 | -0.1125000 | 0.2500000 | Journal of ecoacoustics |
90 | 109 | Ferreira et al. 2018 | 2018 | NA | ACI | invertebrates | T | sound_richness | acoustic | NO | 7 | 0.1765000 | 0.2500000 | Journal of ecoacoustics |
90 | 110 | Ferreira et al. 2018 | 2018 | NA | ACI | mammals | T | sound_richness | acoustic | NO | 7 | -0.0598000 | 0.2500000 | Journal of ecoacoustics |
90 | 111 | Ferreira et al. 2018 | 2018 | NA | ADI | anurans | T | sound_richness | acoustic | NO | 7 | 1.0277000 | 0.2500000 | Journal of ecoacoustics |
90 | 115 | Ferreira et al. 2018 | 2018 | NA | ADI | birds | T | sound_richness | acoustic | NO | 7 | -0.4747000 | 0.2500000 | Journal of ecoacoustics |
90 | 116 | Ferreira et al. 2018 | 2018 | NA | ADI | invertebrates | T | sound_richness | acoustic | NO | 7 | 0.8162000 | 0.2500000 | Journal of ecoacoustics |
90 | 117 | Ferreira et al. 2018 | 2018 | NA | ADI | mammals | T | sound_richness | acoustic | NO | 7 | 0.3826000 | 0.2500000 | Journal of ecoacoustics |
90 | 118 | Ferreira et al. 2018 | 2018 | NA | AEI | anurans | T | sound_richness | acoustic | NO | 7 | -0.9660000 | 0.2500000 | Journal of ecoacoustics |
90 | 122 | Ferreira et al. 2018 | 2018 | NA | AEI | birds | T | sound_richness | acoustic | NO | 7 | 0.6011000 | 0.2500000 | Journal of ecoacoustics |
90 | 123 | Ferreira et al. 2018 | 2018 | NA | AEI | invertebrates | T | sound_richness | acoustic | NO | 7 | -0.7058000 | 0.2500000 | Journal of ecoacoustics |
90 | 124 | Ferreira et al. 2018 | 2018 | NA | AEI | mammals | T | sound_richness | acoustic | NO | 7 | -0.4389000 | 0.2500000 | Journal of ecoacoustics |
90 | 125 | Ferreira et al. 2018 | 2018 | NA | BIO | anurans | T | sound_richness | acoustic | NO | 7 | -0.1743000 | 0.2500000 | Journal of ecoacoustics |
90 | 129 | Ferreira et al. 2018 | 2018 | NA | BIO | birds | T | sound_richness | acoustic | NO | 7 | -0.1358000 | 0.2500000 | Journal of ecoacoustics |
90 | 130 | Ferreira et al. 2018 | 2018 | NA | BIO | invertebrates | T | sound_richness | acoustic | NO | 7 | -0.0556000 | 0.2500000 | Journal of ecoacoustics |
90 | 131 | Ferreira et al. 2018 | 2018 | NA | BIO | mammals | T | sound_richness | acoustic | NO | 7 | -0.0839000 | 0.2500000 | Journal of ecoacoustics |
90 | 132 | Ferreira et al. 2018 | 2018 | NA | H | anurans | T | sound_richness | acoustic | NO | 7 | 1.2090000 | 0.2500000 | Journal of ecoacoustics |
90 | 136 | Ferreira et al. 2018 | 2018 | NA | H | birds | T | sound_richness | acoustic | NO | 7 | -0.5048000 | 0.2500000 | Journal of ecoacoustics |
90 | 137 | Ferreira et al. 2018 | 2018 | NA | H | invertebrates | T | sound_richness | acoustic | NO | 7 | 0.8949000 | 0.2500000 | Journal of ecoacoustics |
90 | 138 | Ferreira et al. 2018 | 2018 | NA | H | mammals | T | sound_richness | acoustic | NO | 7 | 0.4169000 | 0.2500000 | Journal of ecoacoustics |
90 | 142 | Ferreira et al. 2018 | 2018 | NA | NDSI | anurans | T | sound_richness | acoustic | NO | 7 | 1.1933000 | 0.2500000 | Journal of ecoacoustics |
90 | 146 | Ferreira et al. 2018 | 2018 | NA | NDSI | birds | T | sound_richness | acoustic | NO | 7 | -0.5567000 | 0.2500000 | Journal of ecoacoustics |
90 | 147 | Ferreira et al. 2018 | 2018 | NA | NDSI | invertebrates | T | sound_richness | acoustic | NO | 7 | 0.8485000 | 0.2500000 | Journal of ecoacoustics |
90 | 148 | Ferreira et al. 2018 | 2018 | NA | NDSI | mammals | T | sound_richness | acoustic | NO | 7 | 0.4513000 | 0.2500000 | Journal of ecoacoustics |
92 | 88 | Torti et al. 2018 | 2018 | 1.950 | ACI | mammals | T | abundance | no_acoustic | NO | 258 | 0.6150000 | 0.0039000 | |
92 | 89 | Torti et al. 2018 | 2018 | 1.950 | ADI | mammals | T | abundance | no_acoustic | NO | 258 | 0.0174000 | 0.0039000 | |
92 | 90 | Torti et al. 2018 | 2018 | 1.950 | AR | mammals | T | abundance | no_acoustic | NO | 258 | 0.0266000 | 0.0039000 | |
92 | 91 | Torti et al. 2018 | 2018 | 1.950 | H | mammals | T | abundance | no_acoustic | NO | 258 | 0.1404000 | 0.0039000 | |
96 | 105 | Izaguirre et al. 2018 | 2018 | NA | ACI | birds | T | abundance | no_acoustic | YES | 12 | 0.7315000 | 0.1111000 | Journal of ecoacoustics |
96 | 106 | Izaguirre et al. 2018 | 2018 | NA | ACI | birds | T | diversity | no_acoustic | YES | 12 | -0.7068500 | 0.0833250 | Journal of ecoacoustics |
96 | 107 | Izaguirre et al. 2018 | 2018 | NA | ACI | birds | T | richness | no_acoustic | YES | 12 | -0.7941000 | 0.1111000 | Journal of ecoacoustics |
96 | 112 | Izaguirre et al. 2018 | 2018 | NA | ADI | birds | T | abundance | no_acoustic | YES | 12 | -0.7958000 | 0.1111000 | Journal of ecoacoustics |
96 | 113 | Izaguirre et al. 2018 | 2018 | NA | ADI | birds | T | diversity | no_acoustic | YES | 12 | 0.6084000 | 0.0833250 | Journal of ecoacoustics |
96 | 114 | Izaguirre et al. 2018 | 2018 | NA | ADI | birds | T | richness | no_acoustic | YES | 12 | 0.5192000 | 0.1111000 | Journal of ecoacoustics |
96 | 119 | Izaguirre et al. 2018 | 2018 | NA | AEI | birds | T | abundance | no_acoustic | YES | 12 | 0.7430000 | 0.1111000 | Journal of ecoacoustics |
96 | 120 | Izaguirre et al. 2018 | 2018 | NA | AEI | birds | T | diversity | no_acoustic | YES | 12 | -0.5394000 | 0.0833250 | Journal of ecoacoustics |
96 | 121 | Izaguirre et al. 2018 | 2018 | NA | AEI | birds | T | richness | no_acoustic | YES | 12 | -0.4181000 | 0.1111000 | Journal of ecoacoustics |
96 | 126 | Izaguirre et al. 2018 | 2018 | NA | BIO | birds | T | abundance | no_acoustic | YES | 12 | 0.5553000 | 0.1111000 | Journal of ecoacoustics |
96 | 127 | Izaguirre et al. 2018 | 2018 | NA | BIO | birds | T | diversity | no_acoustic | YES | 12 | -0.6801500 | 0.0833250 | Journal of ecoacoustics |
96 | 128 | Izaguirre et al. 2018 | 2018 | NA | BIO | birds | T | richness | no_acoustic | YES | 12 | -0.5485000 | 0.1111000 | Journal of ecoacoustics |
96 | 133 | Izaguirre et al. 2018 | 2018 | NA | H | birds | T | abundance | no_acoustic | YES | 12 | -0.3904000 | 0.1111000 | Journal of ecoacoustics |
96 | 134 | Izaguirre et al. 2018 | 2018 | NA | H | birds | T | diversity | no_acoustic | YES | 12 | 0.3747000 | 0.0833250 | Journal of ecoacoustics |
96 | 135 | Izaguirre et al. 2018 | 2018 | NA | H | birds | T | richness | no_acoustic | YES | 12 | 0.5773000 | 0.1111000 | Journal of ecoacoustics |
96 | 139 | Izaguirre et al. 2018 | 2018 | NA | M | birds | T | abundance | no_acoustic | YES | 12 | 0.4944000 | 0.1111000 | Journal of ecoacoustics |
96 | 140 | Izaguirre et al. 2018 | 2018 | NA | M | birds | T | diversity | no_acoustic | YES | 12 | -0.6604000 | 0.0833250 | Journal of ecoacoustics |
96 | 141 | Izaguirre et al. 2018 | 2018 | NA | M | birds | T | richness | no_acoustic | YES | 12 | -0.6686000 | 0.1111000 | Journal of ecoacoustics |
96 | 143 | Izaguirre et al. 2018 | 2018 | NA | NDSI | birds | T | abundance | no_acoustic | YES | 12 | -0.0955000 | 0.1111000 | Journal of ecoacoustics |
96 | 144 | Izaguirre et al. 2018 | 2018 | NA | NDSI | birds | T | diversity | no_acoustic | YES | 12 | 0.2976500 | 0.0833250 | Journal of ecoacoustics |
96 | 145 | Izaguirre et al. 2018 | 2018 | NA | NDSI | birds | T | richness | no_acoustic | YES | 12 | 0.4012000 | 0.1111000 | Journal of ecoacoustics |
96 | 149 | Izaguirre et al. 2018 | 2018 | NA | NP | birds | T | abundance | no_acoustic | YES | 12 | -0.5983000 | 0.1111000 | Journal of ecoacoustics |
96 | 150 | Izaguirre et al. 2018 | 2018 | NA | NP | birds | T | diversity | no_acoustic | YES | 12 | 0.6247500 | 0.0833250 | Journal of ecoacoustics |
96 | 151 | Izaguirre et al. 2018 | 2018 | NA | NP | birds | T | richness | no_acoustic | YES | 12 | 0.6372000 | 0.1111000 | Journal of ecoacoustics |
251 | 168 | Buxton et al. 2016 | 2016 | 2.440 | ACI | birds | T | diversity | acoustic | NO | 72 | 0.2300000 | 0.0108750 | Ecol. Evol. |
251 | 169 | Buxton et al. 2016 | 2016 | 2.440 | ACI | birds | T | richness | acoustic | NO | 72 | 0.3673000 | 0.0145000 | Ecol. Evol. |
427 | 27 | Fuller et al. 2015 | 2015 | 3.190 | ACI | birds | T | richness | acoustic | NO | 380 | 0.0503000 | 0.0027000 | Ecol. Indic. |
427 | 28 | Fuller et al. 2015 | 2015 | 3.190 | ADI | birds | T | richness | acoustic | NO | 380 | 0.0395000 | 0.0027000 | Ecol. Indic. |
427 | 29 | Fuller et al. 2015 | 2015 | 3.190 | AEI | birds | T | richness | acoustic | NO | 380 | 0.0864000 | 0.0027000 | Ecol. Indic. |
427 | 30 | Fuller et al. 2015 | 2015 | 3.190 | BIO | birds | T | richness | acoustic | NO | 380 | 0.0543000 | 0.0027000 | Ecol. Indic. |
427 | 31 | Fuller et al. 2015 | 2015 | 3.190 | H | birds | T | richness | acoustic | NO | 380 | 0.1281000 | 0.0027000 | Ecol. Indic. |
427 | 32 | Fuller et al. 2015 | 2015 | 3.190 | NDSI | birds | T | richness | acoustic | NO | 380 | 0.1517000 | 0.0027000 | Ecol. Indic. |
1132 | 10 | Depraetere et al. 2012 | 2012 | 2.890 | AR | birds | T | richness | acoustic | NO | 12 | 1.7295000 | 0.1111000 | Ecol. Indic. |
1177 | 5 | Joo et al. 2011 | 2011 | 2.170 | H | birds | T | richness | acoustic | YES | 5 | 0.1820000 | 0.5000000 | Landsc. Urban Plan. |
1262 | 6 | Pieretti et al. 2011 | 2011 | 2.700 | ACI | birds | T | sound_abundance | acoustic | YES | 20 | 1.2568600 | 0.0352800 | Ecol. Indic. |
2740 | 69 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | diversity | no_acoustic | NO | 47 | 0.1614000 | 0.0227000 | Ecol. Indic. |
2740 | 70 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 47 | 0.2132000 | 0.0227000 | Ecol. Indic. |
2740 | 72 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | diversity | no_acoustic | NO | 47 | 0.3769000 | 0.0227000 | Ecol. Indic. |
2740 | 73 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 47 | 0.3654000 | 0.0227000 | Ecol. Indic. |
2740 | 74 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | diversity | no_acoustic | NO | 47 | -0.4118000 | 0.0227000 | Ecol. Indic. |
2740 | 75 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 47 | -0.4236000 | 0.0227000 | Ecol. Indic. |
2740 | 76 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | diversity | no_acoustic | NO | 47 | -0.4847000 | 0.0227000 | Ecol. Indic. |
2740 | 77 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 47 | -0.4973000 | 0.0227000 | Ecol. Indic. |
2740 | 78 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | diversity | no_acoustic | NO | 47 | -0.2986000 | 0.0227000 | Ecol. Indic. |
2740 | 79 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 47 | -0.3541000 | 0.0227000 | Ecol. Indic. |
2740 | 81 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | diversity | no_acoustic | NO | 47 | 0.5361000 | 0.0227000 | Ecol. Indic. |
2740 | 82 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 47 | 0.5627000 | 0.0227000 | Ecol. Indic. |
2740 | 83 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | diversity | no_acoustic | NO | 47 | -0.0100000 | 0.0227000 | Ecol. Indic. |
2740 | 84 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 47 | -0.0100000 | 0.0227000 | Ecol. Indic. |
2740 | 182 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | diversity | no_acoustic | NO | 47 | 0.0601000 | 0.0227000 | Ecol. Indic. |
2740 | 183 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 47 | -0.0300000 | 0.0227000 | Ecol. Indic. |
2740 | 184 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | diversity | no_acoustic | NO | 47 | 0.7250000 | 0.0227000 | Ecol. Indic. |
2740 | 185 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 47 | 0.6184000 | 0.0227000 | Ecol. Indic. |
2740 | 187 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | diversity | no_acoustic | NO | 47 | -0.7089000 | 0.0227000 | Ecol. Indic. |
2740 | 188 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 47 | -0.6042000 | 0.0227000 | Ecol. Indic. |
2740 | 189 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | diversity | no_acoustic | NO | 47 | -0.2448000 | 0.0227000 | Ecol. Indic. |
2740 | 190 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 47 | -0.2448000 | 0.0227000 | Ecol. Indic. |
2740 | 191 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | diversity | no_acoustic | NO | 47 | 0.2027000 | 0.0227000 | Ecol. Indic. |
2740 | 192 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 47 | 0.2342000 | 0.0227000 | Ecol. Indic. |
2740 | 193 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | diversity | no_acoustic | NO | 47 | 0.7928000 | 0.0227000 | Ecol. Indic. |
2740 | 194 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 47 | 0.6777000 | 0.0227000 | Ecol. Indic. |
2740 | 195 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | diversity | no_acoustic | NO | 47 | 0.6931000 | 0.0227000 | Ecol. Indic. |
2740 | 196 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 47 | 0.6042000 | 0.0227000 | Ecol. Indic. |
2740 | 240 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | diversity | no_acoustic | NO | 50 | 0.0601000 | 0.0213000 | Ecol. Indic. |
2740 | 241 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 50 | 0.0400000 | 0.0213000 | Ecol. Indic. |
2740 | 242 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | diversity | no_acoustic | NO | 50 | 0.5101000 | 0.0213000 | Ecol. Indic. |
2740 | 243 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 50 | 0.6328000 | 0.0213000 | Ecol. Indic. |
2740 | 244 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | diversity | no_acoustic | NO | 50 | -0.4973000 | 0.0213000 | Ecol. Indic. |
2740 | 245 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 50 | -0.6475000 | 0.0213000 | Ecol. Indic. |
2740 | 246 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | diversity | no_acoustic | NO | 50 | -0.1003000 | 0.0213000 | Ecol. Indic. |
2740 | 247 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 50 | -0.0802000 | 0.0213000 | Ecol. Indic. |
2740 | 248 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | diversity | no_acoustic | NO | 50 | 0.2237000 | 0.0213000 | Ecol. Indic. |
2740 | 249 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 50 | 0.3884000 | 0.0213000 | Ecol. Indic. |
2740 | 250 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | diversity | no_acoustic | NO | 50 | 0.3095000 | 0.0213000 | Ecol. Indic. |
2740 | 251 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 50 | 0.3769000 | 0.0213000 | Ecol. Indic. |
2740 | 252 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | diversity | no_acoustic | NO | 50 | 0.2769000 | 0.0213000 | Ecol. Indic. |
2740 | 253 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 50 | 0.3654000 | 0.0213000 | Ecol. Indic. |
2740 | 287 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.0701000 | 0.1429000 | Ecol. Indic. |
2740 | 288 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6042000 | 0.1429000 | Ecol. Indic. |
2740 | 289 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6625000 | 0.1429000 | Ecol. Indic. |
2740 | 290 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.1003000 | 0.1429000 | Ecol. Indic. |
2740 | 291 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.1923000 | 0.1429000 | Ecol. Indic. |
2740 | 292 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4236000 | 0.1429000 | Ecol. Indic. |
2740 | 293 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.3769000 | 0.1429000 | Ecol. Indic. |
2740 | 302 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.0300000 | 0.1429000 | Ecol. Indic. |
2740 | 303 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6475000 | 0.1429000 | Ecol. Indic. |
2740 | 304 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6777000 | 0.1429000 | Ecol. Indic. |
2740 | 305 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.1003000 | 0.1429000 | Ecol. Indic. |
2740 | 306 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.2237000 | 0.1429000 | Ecol. Indic. |
2740 | 307 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4722000 | 0.1429000 | Ecol. Indic. |
2740 | 308 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.4847000 | 0.1429000 | Ecol. Indic. |
2740 | 313 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.0701000 | 0.1429000 | Ecol. Indic. |
2740 | 314 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6184000 | 0.1429000 | Ecol. Indic. |
2740 | 315 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6777000 | 0.1429000 | Ecol. Indic. |
2740 | 316 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.0601000 | 0.1429000 | Ecol. Indic. |
2740 | 317 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.2237000 | 0.1429000 | Ecol. Indic. |
2740 | 318 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4118000 | 0.1429000 | Ecol. Indic. |
2740 | 319 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.3316000 | 0.1429000 | Ecol. Indic. |
2740 | 328 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.0300000 | 0.1429000 | Ecol. Indic. |
2740 | 329 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6184000 | 0.1429000 | Ecol. Indic. |
2740 | 330 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6777000 | 0.1429000 | Ecol. Indic. |
2740 | 331 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.0601000 | 0.1429000 | Ecol. Indic. |
2740 | 332 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.2342000 | 0.1429000 | Ecol. Indic. |
2740 | 333 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4236000 | 0.1429000 | Ecol. Indic. |
2740 | 334 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.3884000 | 0.1429000 | Ecol. Indic. |
2740 | 341 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.1104000 | 0.1429000 | Ecol. Indic. |
2740 | 342 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6042000 | 0.1429000 | Ecol. Indic. |
2740 | 343 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6475000 | 0.1429000 | Ecol. Indic. |
2740 | 344 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.0701000 | 0.1429000 | Ecol. Indic. |
2740 | 345 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.2342000 | 0.1429000 | Ecol. Indic. |
2740 | 346 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4236000 | 0.1429000 | Ecol. Indic. |
2740 | 347 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.4477000 | 0.1429000 | Ecol. Indic. |
2740 | 352 | Mammides et al. 2017 | 2017 | 3.980 | ACI | birds | T | richness | no_acoustic | NO | 10 | 0.0902000 | 0.1429000 | Ecol. Indic. |
2740 | 353 | Mammides et al. 2017 | 2017 | 3.980 | ADI | birds | T | richness | no_acoustic | NO | 10 | 0.6328000 | 0.1429000 | Ecol. Indic. |
2740 | 354 | Mammides et al. 2017 | 2017 | 3.980 | AEI | birds | T | richness | no_acoustic | NO | 10 | -0.6777000 | 0.1429000 | Ecol. Indic. |
2740 | 355 | Mammides et al. 2017 | 2017 | 3.980 | AR | birds | T | richness | no_acoustic | NO | 10 | -0.1003000 | 0.1429000 | Ecol. Indic. |
2740 | 356 | Mammides et al. 2017 | 2017 | 3.980 | BIO | birds | T | richness | no_acoustic | NO | 10 | 0.2027000 | 0.1429000 | Ecol. Indic. |
2740 | 357 | Mammides et al. 2017 | 2017 | 3.980 | H | birds | T | richness | no_acoustic | NO | 10 | 0.4599000 | 0.1429000 | Ecol. Indic. |
2740 | 358 | Mammides et al. 2017 | 2017 | 3.980 | NDSI | birds | T | richness | no_acoustic | NO | 10 | 0.4356000 | 0.1429000 | Ecol. Indic. |
2745 | 2 | Sueur et al. 2008 | 2008 | 4.810 | H | several | T | richness | acoustic | NO | 10 | 1.7211000 | 0.1429000 | PLoS One |
2977 | 97 | Jorge et al. 2018 | 2018 | 4.490 | ACI | birds | T | richness | acoustic | YES | 9 | 0.5731000 | 0.1667000 | Ecol. Indic. |
2977 | 99 | Jorge et al. 2018 | 2018 | 4.490 | ADI | birds | T | richness | acoustic | YES | 9 | -0.2672000 | 0.1667000 | Ecol. Indic. |
2977 | 100 | Jorge et al. 2018 | 2018 | 4.490 | AEI | birds | T | richness | acoustic | YES | 9 | 0.3123000 | 0.1667000 | Ecol. Indic. |
2977 | 101 | Jorge et al. 2018 | 2018 | 4.490 | BIO | birds | T | richness | acoustic | YES | 9 | 0.4181000 | 0.1667000 | Ecol. Indic. |
2977 | 102 | Jorge et al. 2018 | 2018 | 4.490 | H | birds | T | richness | acoustic | YES | 9 | -0.1475000 | 0.1667000 | Ecol. Indic. |
2977 | 103 | Jorge et al. 2018 | 2018 | 4.490 | NDSI | birds | T | richness | acoustic | YES | 9 | 0.3352000 | 0.1667000 | Ecol. Indic. |
2977 | 205 | Jorge et al. 2018 | 2018 | 4.490 | ACI | birds | T | richness | acoustic | YES | 9 | 0.3123000 | 0.1667000 | Ecol. Indic. |
2977 | 207 | Jorge et al. 2018 | 2018 | 4.490 | ADI | birds | T | richness | acoustic | YES | 9 | -0.4676000 | 0.1667000 | Ecol. Indic. |
2977 | 208 | Jorge et al. 2018 | 2018 | 4.490 | AEI | birds | T | richness | acoustic | YES | 9 | 0.5192000 | 0.1667000 | Ecol. Indic. |
2977 | 209 | Jorge et al. 2018 | 2018 | 4.490 | BIO | birds | T | richness | acoustic | YES | 9 | 0.3009000 | 0.1667000 | Ecol. Indic. |
2977 | 210 | Jorge et al. 2018 | 2018 | 4.490 | H | birds | T | richness | acoustic | YES | 9 | -0.1582000 | 0.1667000 | Ecol. Indic. |
2977 | 211 | Jorge et al. 2018 | 2018 | 4.490 | NDSI | birds | T | richness | acoustic | YES | 9 | 0.3352000 | 0.1667000 | Ecol. Indic. |
2986 | 68 | Raynor et al. 2017 | 2017 | 2.720 | ACI | birds | T | richness | acoustic | YES | 6 | 0.2448000 | 0.3333000 | Condor |
Table S2 - Variable descriptions for Table S1.
<- data.frame(Variables = c("id", "entry", "year", "impact_factor", "index",
vd "taxa", "environ", "bio", "diversity_source", "pseudoreplication",
"n", "z", "var", "journal"),
Descriptions = c(
"Identification number for the study",
"Identification number for the effect size (row entry)",
"Year of publication",
"Impact factor of the Journal",
"Acoustic index used",
"Studied taxonomic group studied (invertebrates, fish, anurans, mammals, birds or several)",
"Studied environment (i.e., ecosystem type where recordings were collected: *aquatic* [A] or *terrestrial* [T]",
"Diversity metric used to correlate with acoustic index values",
paste("Method applied to obtain the diversity metric: audio recordings (*acoustic*) or other sources (field surveys, literature, etc.; *non-acoustic*)"),
paste("Inadequate specification of the number of observations in the statistical test (Yes/No)"),
"Adjusted sample size (i.e., suitable specification of the number of true replicates)",
"Fisher's Z effect size",
"Fisher's Z variance",
"Journal where the study was published"
)
)pander(vd, justify = "left")
Variables | Descriptions |
---|---|
id | Identification number for the study |
entry | Identification number for the effect size (row entry) |
year | Year of publication |
impact_factor | Impact factor of the Journal |
index | Acoustic index used |
taxa | Studied taxonomic group studied (invertebrates, fish, anurans, mammals, birds or several) |
environ | Studied environment (i.e., ecosystem type where recordings were collected: aquatic [A] or terrestrial [T] |
bio | Diversity metric used to correlate with acoustic index values |
diversity_source | Method applied to obtain the diversity metric: audio recordings (acoustic) or other sources (field surveys, literature, etc.; non-acoustic) |
pseudoreplication | Inadequate specification of the number of observations in the statistical test (Yes/No) |
n | Adjusted sample size (i.e., suitable specification of the number of true replicates) |
z | Fisher’s Z effect size |
var | Fisher’s Z variance |
journal | Journal where the study was published |
In what follows, we provide an overview of the data set used in the meta-analysis.
Our data set comprised a total of 34 studies and 364 effect sizes. Therefore, most studies contributed with more than one effect size for the meta-analysis.
Table S4 - Number of effect sizes collected from each of the 34 studies included in the meta-analysis. ID corresponds to the study identification number in our data set.
<- as.data.frame(table(df_tidy$id), stringsAsFactors = FALSE)
studies_n <- cbind(unique(df_tidy$authors), studies_n)
studies_n colnames(studies_n) <- c("Study", "ID", "Effect_sizes")
$Study <- author_format(studies_n$Study, markup = "markdown")
studies_n
<- studies_n %>%
studies_n select(ID, Study, Effect_sizes) %>%
arrange(-Effect_sizes)
kable(studies_n, format = "html") %>%
kable_styling(c("striped"))
ID | Study | Effect_sizes |
---|---|---|
2740 | Mammides et al. (2017) | 84 |
53 | Moreno-Gómez et al. (2019) | 42 |
87 | Eldridge et al. (2018) | 28 |
80 | Staaterman et al. (2017) | 24 |
90 | Ferreira et al. (2018) | 24 |
96 | Retamosa Izaguirre & Ramírez-Alán (2018) | 24 |
10 | Buscaino et al. (2016) | 22 |
2 | Desjonquères et al. (2015) | 12 |
11 | Bertucci et al. (2016) | 12 |
89 | Gage et al. (2017) | 12 |
2977 | Jorge et al. (2018) | 12 |
70 | Bolgan et al. (2018) | 11 |
9 | Harris et al. (2016) | 6 |
86 | Indraswari et al. (2018) | 6 |
427 | Fuller et al. (2015) | 6 |
14 | wa Maina et al. (2016) | 4 |
60 | Lyon et al. (2019) | 4 |
77 | Fairbrass et al. (2017) | 4 |
92 | Torti et al. (2018) | 4 |
15 | Roca & Proulx (2016) | 3 |
45 | McLaren & DeGroote (2012) | 3 |
13 | McWilliam & Hawkins (2013) | 2 |
41 | Paisley-Jones (2011) | 2 |
44 | Machado et al. (2017) | 2 |
251 | Buxton et al. (2016) | 2 |
4 | Parks et al. (2014) | 1 |
6 | Boelman et al. (2007) | 1 |
17 | Zhang et al. (2015) | 1 |
37 | Picciulin et al. (2016) | 1 |
1132 | Depraetere et al. (2012) | 1 |
1177 | Joo et al. (2011) | 1 |
1262 | Pieretti et al. (2011) | 1 |
2745 | Sueur et al. (2008) | 1 |
2986 | Raynor et al. (2017) | 1 |
The most studied acoustic index was ACI and the most used biodiversity metric was species richness.
Table S5 - Number of effect sizes and studies per moderator level.
# Table for moderator levels
<- c("index", "bio", "diversity_source", "environ")
mods <- do.call(rbind, lapply(mods, function(x) n_studies_entries(df_tidy, x)))
sample_sizes
# Format output
<- cbind(row.names(sample_sizes), sample_sizes)
sample_sizes <- as.data.frame(sample_sizes)
sample_sizes names(sample_sizes) <- c("Moderator_levels", "Effect_sizes", "Studies")
$Moderator_levels <- final_mod_names(sample_sizes$Moderator_levels)
sample_sizes$Moderator_levels <- str_replace(sample_sizes$Moderator_levels, "^([a-z])", toupper)
sample_sizes<- nrow(sample_sizes)
n_row $Moderator_levels[(n_row - 1):n_row] <- c("Aquatic", "Terrestrial")
sample_sizes
names(sample_sizes) <- str_replace(names(sample_sizes), "_", " ")
kable(sample_sizes, format = "html", row.names = FALSE) %>%
kable_styling("striped", full_width = FALSE, position = "left") %>%
row_spec(0, font_size = 16, bold = TRUE) %>%
pack_rows("Acoustic indices", 1, 11) %>%
pack_rows("Biodiversity metrics", 12, 16) %>%
pack_rows("Diversity source", 17, 18) %>%
pack_rows("Environment", 19, 20)
Moderator levels | Effect sizes | Studies |
---|---|---|
Acoustic indices | ||
ACI | 113 | 25 |
ADI | 38 | 12 |
AEI | 34 | 8 |
AR | 18 | 5 |
BIO | 36 | 10 |
H | 55 | 16 |
Hf | 12 | 3 |
Ht | 15 | 4 |
M | 5 | 2 |
NDSI | 33 | 10 |
NP | 5 | 2 |
Biodiversity metrics | ||
Species abundance | 27 | 6 |
Species diversity | 49 | 9 |
Richness | 187 | 21 |
Abundance of sounds | 66 | 11 |
Diversity of sounds | 35 | 3 |
Diversity source | ||
Acoustic | 200 | 26 |
Non acoustic | 164 | 11 |
Environment | ||
Aquatic | 95 | 10 |
Terrestrial | 269 | 24 |
We gathered studies from 6 of the 7 continents (no studies in Antarctica). Most studies were conducted in the USA, France, Australia and Brazil.
::include_graphics("rmd/mapa.png") knitr
Figure 5A - The geographic distribution of the study sites corresponding to the 35 studies used in the literature review. The colouring of countries exhibits a white to black gradient relative to an increase in the number of studies contributed by each country. The coloured dots discriminate between different groups of studied taxa.
The performance of acoustic diversity indices as a biodiversity indicators was mainly assessed with species richness and abundance of sounds as diversity metrics, mainly on birds.
::include_graphics("rmd/heatmap.png") knitr
Figure 5B - Distribution of the number of articles by diversity metric, taxa and acoustic index studied, from the 35 studies included in the literature review.
A large set of studies (40%) exhibited statistical deficiencies in testing the relationship between acoustic indices and diversity metrics due to pseudoreplication.
::include_graphics("rmd/ps.index.png") knitr
Figure S1 - Pseudoreplication summary.
We clustered effect sizes within their corresponding studies and conducted multilevel meta-analysis using Fisher’s Z as our response variable. The multilevel structure accounted for the correlation structures within studies and thus allowed the inclusion of multiple effect sizes per study.
We tested whether acoustic indices were good estimators of biodiversity by computing an intercept-only model. The resulting summary effect size not only gives a clue of whether acoustic indices are performing well in estimating biodiversity across the literature, but also allows us to check if there is substantial heterogeneity in our effect sizes that could be explained by moderators.
Intercept-only meta-analysis output<- rma.mv(z, var, random = ~1 | id/entry, data = df_tidy)
res_main res_main
##
## Multivariate Meta-Analysis Model (k = 364; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0458 0.2139 34 no id
## sigma^2.2 0.1755 0.4190 364 no id/entry
##
## Test for Heterogeneity:
## Q(df = 363) = 2220.9097, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3461 0.0577 6.0014 <.0001 0.2331 0.4591 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Table S7 - Resulting estimates from intercept-only model converted to Pearson’s correlation. “Estimate” is the Pearson’s r summary effect size. “CI.lb” and “CI.ub” are the confidence intervals lower and upper bounds, respectively.
<- sapply(c(r = res_main$b, CI.lb = res_main$ci.lb, CI.ub = res_main$ci.ub), z2r)
r_main <- r_main
r_main_pander names(r_main_pander) <- c("Estimate", names(r_main)[2:3])
pander(r_main_pander)
Estimate | CI.lb | CI.ub |
---|---|---|
0.3329 | 0.2289 | 0.4294 |
The summary estimate indicates that acoustic indices showed a moderate correlation with diversity metrics. However, this result is an overall estimate and thus can hide differences in performance between acoustic indices or context-dependencies due to, for example, different environments or diversity metrics. For this, we would need to inspect moderators, but before it is necessary to check before if our intercept-only model has unexplained variance that can be partitioned by our chosen moderators.
The amount of heterogeneity in effect sizes can be coarsely inspected by plotting all effect sizes and respective variances, and see their dispersion along the x-axis.
<- mutate(df_tidy, z = z2r(z), var = z2r(var))
df_all_plt <- as.data.frame(t(r_main))
r_main <- 2
nudge <- -nudge - 1
overall_y ggplot(data = df_all_plt, aes(x = z, y = reorder(entry, -z))) +
geom_errorbarh(aes(xmin = z - 1.96 * var, xmax = z + 1.96 * var),
height = 0, size = 0.5, color = "grey",
position = position_nudge(y = nudge)) +
geom_point(size = 0.8, color = "darkgreen",
position = position_nudge(y = nudge)) +
geom_segment(aes(x = z2r(res_main$b), y = overall_y,
xend = z2r(res_main$b),
yend = nrow(df_all_plt) + nudge + 10),
color = alpha("forestgreen", 0.7), linetype = 2, size = 0.5) +
geom_vline(xintercept = 0, linetype = 1) +
# Insert overall estimate
geom_errorbarh(aes(xmin = r_main$CI.lb, xmax = r_main$CI.ub, y = overall_y),
color = "grey") +
geom_point(data = r_main, aes(x = r, y = overall_y), size = 3, color = "forestgreen") +
geom_hline(yintercept = nudge - 1, color = alpha("black", 0.5), linetype = 5, size = 1) +
annotate("text", x = -1.4, y = overall_y, label= "Overall estimate", size = 4, adj = "right") +
scale_y_discrete(expand = c(0.025, 0.01)) +
xlab("Effect size (r)") +
ylab("Data set entries ordered by effect size magnitude") +
theme_minimal() +
theme(axis.text.x = element_text(size = 12, color = "black"),
axis.text.y = element_blank(),
axis.line.x = element_line(color = "black"),
axis.line.y = element_line(color = "black"),
axis.title = element_text(size = 14),
panel.grid.major.y = element_blank(),
legend.position = "none"
)
Figure 6A - Pearson correlation effect sizes (r) in ascending order of magnitude from all data set entries. Effect sizes larger than 0 (vertical line) represent a positive correlation between acoustic indices and diversity. Effect sizes below 0 indicate a negative correlation between acoustic indices and diversity. Above the dashed horizontal line, the green circles are effect sizes means, with corresponding 95% confidence intervals (grey horizontal lines). Below the dashed line, the green circle is the overall effect size, with a corresponding 95% confidence interval, obtained from the intercept-only meta-analysis.
We quantified heterogeneity with the I² statistic, which estimates the proportion of unknown variation in effect sizes not attributed to sampling error variance.
Web Supplementary Table 1 - Unaccounted heterogeneity of the intercept-only model as measured by I2 statistic. Within study heterogeneity (level 2) corresponds to the unaccounted variation that is found on effect sizes within studies, and between study heterogeneity corresponds to the unaccounted variation between studies (level 3).
<- "font-family: Arial"
font_css <- multilevel_I(res_main) * 100
Is <- data.frame(Is[1], Is[2])
Is_df names(Is_df) <- c("Within study", "Between study")
rownames(Is_df) <- c("% Unexplained variation")
<- paste("Total heterogeneity: ", round(Is[1] + Is[2], 2), "%")
total_I <- c(3)
header names(header) <- c(total_I)
kable(Is_df, format = "html", digits = 2) %>%
kable_styling(c("striped", "bordered"), full_width = FALSE,
position = "center") %>%
add_header_above(header, font_size = 16, bold = TRUE,
extra_css = font_css) %>%
row_spec(0, font_size = 14, extra_css = font_css) %>%
row_spec(1, font_size = 12, align = "center")
Within study | Between study | |
---|---|---|
% Unexplained variation | 17.61 | 67.52 |
mlm.variance.distribution(res_main)
Figure S2 - Visual representation of how variance was distributed over the multilevel structure of the intercept-only model. Within study heterogeneity (level 2) corresponds to the unaccounted variation that is found on effect sizes within studies, and between study heterogeneity corresponds to the unaccounted variation between studies (level 3).
The value of I2 = 85% corresponds to the amount of heterogeneity that remains unaccounted for in the intercept-only model, and gives a green signal to proceed with the use of moderators that can potentially explain some of this variation.
We extended the previous intercept-only model with the inclusion of moderators as fixed factors. For these analyses, all moderator levels with less than 5 studies were excluded as low study sizes are more liable to produce biased estimates. This led to the removal of the acoustic indices ‘Hf’, ‘Ht’, ‘M’ and ‘NP’, and the diversity metric ‘diversity of sounds’ from model fitting procedures.
We conducted sub-group analysis with acoustic index as a moderator to assess which acoustic indices best correlate with biodiversity.
To specifically test whether the effect size estimates from each acoustic index were different from zero we removed the model intercept.
<- clear_moderators(df_tidy, "index") df_indices
## Levels dropped from dataframe:
## Moderator index
## Hf Ht M NP
<- rma.mv(z, var, random = ~ 1 | id/entry, mods = ~ index - 1, data = df_indices)
res_indices res_indices
##
## Multivariate Meta-Analysis Model (k = 327; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0295 0.1716 34 no id
## sigma^2.2 0.1710 0.4135 327 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 320) = 1876.0325, p-val < .0001
##
## Test of Moderators (coefficients 1:7):
## QM(df = 7) = 70.5454, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## indexACI 0.3809 0.0685 5.5596 <.0001 0.2466 0.5152 ***
## indexADI 0.2493 0.0977 2.5506 0.0108 0.0577 0.4408 *
## indexAEI 0.0396 0.1048 0.3774 0.7059 -0.1658 0.2449
## indexAR 0.0780 0.1354 0.5756 0.5649 -0.1875 0.3434
## indexBIO 0.1950 0.1012 1.9266 0.0540 -0.0034 0.3934 .
## indexH 0.5511 0.0903 6.1036 <.0001 0.3742 0.7281 ***
## indexNDSI 0.4557 0.1037 4.3944 <.0001 0.2524 0.6589 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Table S8 - Resulting estimates from sub-group analysis. The ‘Estimate’ column is the Pearson correlation effect size; SE is the standard error and CI.lb and CI.up; and the lower and upper bounds of the confidence intervals, respectively.
<- get_predictions(res_indices, intercept = FALSE)
df_pred_indices $coef <- str_remove(df_pred_indices$coef, "index")
df_pred_indicesnames(df_pred_indices) <- c("Index", "Estimate", "SE", "CI.lb", "CI.ub")
pander(df_pred_indices)
Index | Estimate | SE | CI.lb | CI.ub |
---|---|---|---|---|
ACI | 0.363 | 0.068 | 0.242 | 0.474 |
ADI | 0.244 | 0.097 | 0.058 | 0.414 |
AEI | 0.04 | 0.104 | -0.164 | 0.24 |
AR | 0.078 | 0.135 | -0.185 | 0.331 |
BIO | 0.193 | 0.101 | -0.003 | 0.374 |
H | 0.501 | 0.09 | 0.358 | 0.622 |
NDSI | 0.427 | 0.103 | 0.247 | 0.578 |
<- rowSums(table(df_indices$index, df_indices$id))
nentries_index <- rowSums(ifelse(table(df_indices$index, df_indices$id) > 0, 1, 0))
nstudies_index <- paste0(nentries_index, " (", nstudies_index, ")")
n_index
<- data.frame("index" = names(nstudies_index),
df_indices_plt "es" = z2r(res_indices$beta),
"se" = z2r(res_indices$se),
"ci.lb" = z2r(res_indices$ci.lb),
"ci.ub" = z2r(res_indices$ci.ub),
"n" = nstudies_index)
ggplot(data = df_indices_plt, aes(x = es, y = index)) +
geom_point(aes(color = index), size = 4) +
geom_errorbarh(aes(xmin = ci.lb, xmax = ci.ub, color= index),
height = 0) +
geom_vline(xintercept = 0, linetype = 1) +
geom_vline(xintercept = z2r(res_main$b), color = "forestgreen",
linetype = 2) +
scale_y_discrete(limits = rev(df_indices_plt$index)) +
scale_color_brewer(palette="Dark2") +
theme_minimal() +
xlab("Effect size (r)") +
theme(axis.text.x = element_text(size = 12, color = "black"),
axis.text.y = element_text(size = 13, color = "black"),
axis.line.x = element_line(color = "black"),
axis.line.y = element_line(color = "black"),
axis.title.x = element_text(size = 14),
axis.title.y = element_blank(),
legend.position = "none"
)
Figure S3 - Effect size mean estimates (circles) and corresponding 95% confidence intervals (horizontal lines) obtained from sub-group meta-analysis with acoustic indices as the grouping factor. Estimated effect sizes whose 95% confidence intervals do not overlap zero (black vertical line) indicate a positive correlation between acoustic indices and diversity if they are to the right of zero, or a negative correlation if they are to the left of zero. The dashed green vertical line represents the summary effect size obtained from the intercept only meta-analysis.
We used meta-regression to check the effect of multiple moderators on the ability of acoustic indices to estimate biodiversity. We focused on four moderators that could alter the performance of biodiversity estimation, namely:
We set as intercept the following combination of moderator levels: ACI index, species richness, terrestrial environment and non-acoustic data source.
Due to low study sample size between most factor level combinations, we were constrained to use only an additive effects model.
<- c("index", "bio", "environ", "diversity_source")
mods <- clear_moderators(df_tidy, mods) df_full
## Levels dropped from dataframe:
## Moderator index
## Hf Ht M NP
## Moderator bio
## sound_richness
## Moderator environ
##
## Moderator diversity_source
##
<- rma.mv(z, var, random = ~1 | id/entry,
res_full mods = ~ index + bio + environ + diversity_source,
data = df_full)
res_full
##
## Multivariate Meta-Analysis Model (k = 296; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0355 0.1884 33 no id
## sigma^2.2 0.1738 0.4168 296 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 284) = 1730.2577, p-val < .0001
##
## Test of Moderators (coefficients 2:12):
## QM(df = 11) = 27.4277, p-val = 0.0040
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3590 0.1416 2.5359 0.0112 0.0815 0.6365
## indexADI -0.1294 0.1171 -1.1049 0.2692 -0.3590 0.1001
## indexAEI -0.2916 0.1231 -2.3679 0.0179 -0.5329 -0.0502
## indexAR -0.2735 0.1482 -1.8461 0.0649 -0.5639 0.0169
## indexBIO -0.1449 0.1203 -1.2038 0.2287 -0.3807 0.0910
## indexH 0.1977 0.1092 1.8111 0.0701 -0.0162 0.4117
## indexNDSI 0.0840 0.1260 0.6667 0.5050 -0.1630 0.3310
## bioabundance -0.0815 0.1589 -0.5133 0.6078 -0.3929 0.2298
## biodiversity -0.0420 0.0950 -0.4423 0.6583 -0.2283 0.1442
## biosound_abundance 0.2600 0.1470 1.7690 0.0769 -0.0281 0.5480
## environA -0.0656 0.1484 -0.4422 0.6583 -0.3565 0.2252
## diversity_sourceacoustic -0.0091 0.1464 -0.0623 0.9504 -0.2962 0.2779
##
## intrcpt *
## indexADI
## indexAEI *
## indexAR .
## indexBIO
## indexH .
## indexNDSI
## bioabundance
## biodiversity
## biosound_abundance .
## environA
## diversity_sourceacoustic
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Multicollinearity among our moderators was inspected with VIF and found not to be an issue in our model (VIF < 1.7 for all moderators, threshold value of 3 (Zuur, Ieno, & Elphick, 2010).
Table S6 - VIF values obtained for each moderator level.
<- vif.rma(res_full, table = TRUE)$vif["vif"][-1, , drop = FALSE]
vif_meta <- tibble::rownames_to_column(vif_meta, "Moderators")
vif_meta colnames(vif_meta)[2] <- "VIF"
$VIF <- round(vif_meta$VIF, 3)
vif_meta$Moderators <- str_remove(vif_meta$Moderators, "index|bio|environ|diversity_source")
vif_meta$Moderators <- final_mod_names(vif_meta$Moderators)
vif_metapander(vif_meta)
Moderators | VIF |
---|---|
ADI | 1.497 |
AEI | 1.45 |
AR | 1.25 |
BIO | 1.478 |
H | 1.472 |
NDSI | 1.437 |
Species abundance | 1.244 |
Species diversity | 1.156 |
Abundance of sounds | 1.454 |
Aquatic | 1.393 |
Acoustic | 1.623 |
Substantial heterogeneity remained to be explained after fitting the full model. Therefore, other factors not tested or an interaction among our moderators could have increased the ability to extract even more information from the data set. For the latter, it is important to conduct more studies on the correlation between acoustic indices and biodiversity in order to allow the computation of more complex models.
# Fit overall model with df_full (without levels with less than 5 studies)
<- rma.mv(z, var, random = ~1 | id/entry, data = df_full)
res_main_full <- sum(multilevel_I(res_main_full))
sum_I_main_full <- sum(multilevel_I(res_full))
sum_I_full
cat("Heterogenity after fitting the full model\n\t", sum_I_full, "\n\n",
"Difference heterogeneity between intercept only model and full model\n\t",
- sum_I_full) sum_I_main_full
## Heterogenity after fitting the full model
## 0.8616913
##
## Difference heterogeneity between intercept only model and full model
## 0.01210371
Web Supplementary Table 2 - Table used to plot Figure 6B. Each estimate corresponds to the predicted effect of each moderator using the predict_rma function from metafor. The column “Coefficients” lists the model intercept and the levels of each moderator. The column “Estimate” is the estimated Pearson (r) correlation. “SE” is the standard error of the estimate. “CI” are the [lower] [upper] bounds of the confidence intervals.
<- get_predictions(res_full, format_table = TRUE, clean_labels = TRUE)
df_pred_tbl $Coefficients <- final_mod_names(df_pred_tbl$Coefficients)
df_pred_tblpander(df_pred_tbl)
Moderators | Coefficients | Estimate | SE | CI |
---|---|---|---|---|
Intercept | Intercept | 0.344 | 0.141 | [0.081] [0.563] |
Index | ADI | 0.226 | 0.147 | [-0.061] [0.478] |
Index | AEI | 0.067 | 0.152 | [-0.228] [0.351] |
Index | AR | 0.085 | 0.17 | [-0.246] [0.399] |
Index | BIO | 0.211 | 0.149 | [-0.08] [0.469] |
Index | H | 0.506 | 0.14 | [0.273] [0.682] |
Index | NDSI | 0.416 | 0.148 | [0.15] [0.626] |
Bio | Species abundance | 0.271 | 0.164 | [-0.047] [0.539] |
Bio | Species diversity | 0.307 | 0.144 | [0.033] [0.537] |
Bio | Abundance of sounds | 0.55 | 0.211 | [0.197] [0.777] |
Environment | Aquatic | 0.285 | 0.142 | [0.012] [0.519] |
Source | Acoustic | 0.336 | 0.108 | [0.136] [0.51] |
<- get_predictions(res_full)
df_pred colnames(df_pred) <- tolower(str_remove(colnames(df_pred), "\\s.*"))
$moderators <- df_pred_tbl$Moderators
df_pred$coef <- factor(df_pred_tbl$Coefficients,
df_predlevels = rev(df_pred_tbl$Coefficients))
<- c("#000000", brewer.pal(n = 4, name = "Dark2"))
plt_colors ggplot(data = df_pred, aes(x = z2r(estimate), y = coef,
color = moderators)) +
geom_point(size = 3) +
geom_errorbarh(aes(xmin = ci.lb, xmax = ci.ub), height = 0, size = 1) +
geom_vline(xintercept = 0, linetype = 1) +
scale_color_manual(values = plt_colors, name = "Moderators") +
theme_minimal() +
xlab("Effect size (r)") +
theme(axis.text.x = element_text(size = 13, color = "black"),
axis.text.y = element_text(size = 13, color = "black"),
axis.line.x = element_line(color = "black"),
axis.line.y = element_line(color = "black"),
axis.title.y = element_blank(),
axis.title.x = element_text(size = 14),
panel.grid.major.y = element_blank(),
legend.title = element_text(hjust = 0.5, size = 14),
legend.text = element_text(size = 14)
)
Figure 6B - Mean estimates (circles) and corresponding 95% confidence intervals (horizontal lines) represented as Pearson correlation (r) effect sizes. Each estimate (except the intercept) corresponds to the additive effect of each coefficient as obtained with the predict_rma function from metafor R package. Estimated effect sizes whose 95% confidence intervals do not overlap zero (black vertical line) indicate a positive correlation between acoustic indices and diversity if they are to the right of zero, or a negative correlation if they are to the left of zero. Moderators are acoustic indices (Index), diversity metrics (Bio), environment (Environment) and acoustic source (Source).
We checked if our choice of moderators explained some of the variation in our effects sizes by computing a Wald-type test on the null hypothesis that moderator levels’ estimates are jointly equal to zero (Viechtbauer et al., 2015).
Table S9 - Wald-type tests for all moderators (first row), and for each moderator separately (remaining rows). “Q” is the Wald statistic; “df” are the degrees of freedom; and “p” is the probability that moderator estimates came from a chi-square distribution, where all estimates are equal to zero. Thus, a p-value < 0.05 gives support against the null hypothesis that moderator levels estimates are equal to zero (i.e. they do not explain variation in effect sizes).
<- matrix(nrow = length(mods) + 1, ncol = 4,
imp_mods dimnames = list(NULL, c("Moderator", "Q", "df", "p")))
<- as.data.frame(imp_mods)
imp_mods # Add importance of all moderators
1, 2:ncol(imp_mods)] <- res_full[c("QM", "m", "QMp")]
imp_mods[$Moderator[1] <- "All moderators"
imp_mods
for(i in 2:nrow(imp_mods)){
<- anova(res_full,
wald_test btt=grep(mods[i - 1], rownames(res_full$b)))[c("QM", "m","QMp")]
2:ncol(imp_mods)] <- wald_test
imp_mods[i,
}$Moderator[2:nrow(imp_mods)] <- c("Acoustic indices",
imp_mods"Diversity metrics",
"Environment", "Diversity source")
<- mutate_if(imp_mods, is.numeric, round, 3)
imp_mods
pander(imp_mods)
Moderator | Q | df | p |
---|---|---|---|
All moderators | 27.43 | 11 | 0.004 |
Acoustic indices | 22.35 | 6 | 0.001 |
Diversity metrics | 3.561 | 3 | 0.313 |
Environment | 0.196 | 1 | 0.658 |
Diversity source | 0.004 | 1 | 0.95 |
We found that acoustic indices explained most of the variation in our full model. Hence, this suggests that acoustic indices are not equally performing when it comes to biodiversity estimation.
To assess pairwise comparisons between moderator level estimates, we selected the moderator levels with the highest effect size estimates and compared these with effect size estimates for the other levels of the same moderator. For this, we used again a Wald-type test with one degree of freedom, on the null hypothesis that the difference between the two levels is equal to zero. Note that, if a moderator has only two levels, the comparison is directly retrieved from the model output.
We compared the best indices, H and NDSI, with the other indices. We did not use ACI for comparisons, as comparisons can be obtained directly from the full model output.
The pairwise comparisons for H index suggest that the H index correlates better with biodiversity than the indices ADI, AEI, AR and BIO.
Table S10 - Wald-type tests for the contrasts between acoustic index H with all other acoustic indices. The column “Compared” expresses the difference between the estimate H and the estimate of each of the other acoustic indices. The column “Estimate” is the estimate obtained from the difference expressed in the previous column; “SE” is the standard error of the difference, and CI.lb, CI.up the confidence interval lower and upper bound, respectively; “QM” is the Wald statistic; “p” is the probability that the difference between estimates is equal to zero. Thus, a p-value < 0.05 gives support against the null hypothesis of no difference between the estimate of the H index and the estimate of the other index.
# Test differences between H and other indices
<- compare_moderators(df_full, res_full, "index", "H")
H_comp kable(H_comp, format = "html", digits = 3) %>%
kable_styling(c("strip", "condensed"))
Compared | Estimate | SE | CI.lb | CI.ub | ||
---|---|---|---|---|---|---|
H - ADI | 0.327 | 0.122 | 0.089 | 0.566 | 7.223 | 0.007 |
H - AEI | 0.489 | 0.127 | 0.241 | 0.738 | 14.901 | 0.000 |
H - AR | 0.471 | 0.152 | 0.173 | 0.769 | 9.623 | 0.002 |
H - BIO | 0.343 | 0.124 | 0.099 | 0.586 | 7.591 | 0.006 |
H - ACI | 0.198 | 0.109 | -0.016 | 0.412 | 3.280 | 0.070 |
H - NDSI | 0.114 | 0.130 | -0.141 | 0.369 | 0.765 | 0.382 |
The pairwise comparison for NDSI index suggest that the NDSI index correlates better with biodiversity than the indices AEI and AR.
Table S11 - Wald-type tests for the contrasts between acoustic index NDSI with all other acoustic indices. The column “Compared” expresses the difference between the estimate NDSI and the estimate of each of the other acoustic indices. The column “Estimate” is the estimate obtained from the difference expressed in the previous column; “SE” is the standard error of the difference, and CI.lb, CI.up the confidence interval lower and upper bound, respectively; “QM” is the Wald statistic; “p” is the probability that the difference between estimates is equal to zero. Thus, a p-value < 0.05 gives support against the null hypothesis of no difference between the estimate of the NDSI index and the estimate of the other index.
# Test differences between NDSI and other indices
<- compare_moderators(df_full, res_full, "index", "NDSI")
NDSI_comp kable(NDSI_comp, format = "html", digits = 3) %>%
kable_styling(c("strip", "condensed"))
Compared | Estimate | SE | CI.lb | CI.ub | ||
---|---|---|---|---|---|---|
NDSI - ADI | 0.213 | 0.133 | -0.047 | 0.474 | 2.586 | 0.108 |
NDSI - AEI | 0.376 | 0.138 | 0.106 | 0.645 | 7.442 | 0.006 |
NDSI - AR | 0.358 | 0.161 | 0.041 | 0.674 | 4.914 | 0.027 |
NDSI - BIO | 0.229 | 0.135 | -0.036 | 0.494 | 2.869 | 0.090 |
NDSI - H | -0.114 | 0.130 | -0.369 | 0.141 | 0.765 | 0.382 |
NDSI - ACI | 0.084 | 0.126 | -0.163 | 0.331 | 0.444 | 0.505 |
Since using abundance of sounds as a diversity metric seemed to be related with a better correlation between acoustic indices and biodiversity, we use abundance of sounds to compute pairwise comparisons with the other diversity metrics.
The pairwise comparison for abundance of sounds gave marginal support (at p < 0.05) for the null hypothesis of no difference between abundance of sounds and other diversity metrics.
Table S12 - Wald-type tests for the contrasts between the diversity metric abundance of sounds with all other diversity metrics. The column “Compared” expresses difference between the estimate abundance of sounds and the estimate of each of the other diversity metrics. The column “Estimate” is the estimate obtained from the difference expressed in the previous column; “SE” is the standard error of the difference, and CI.lb, CI.up the confidence interval lower and upper bound, respectively; “QM” is the Wald statistic; “p” is the probability that the difference between estimates is equal to zero. Thus, a p-value < 0.05 gives support against the null hypothesis of no difference between the estimate of the abundance sounds metric and the estimate of the other metric.
# Test difference between sound_abundance and other bio levels
<- compare_moderators(df_full, res_full, "bio", "sound_abundance")
sound_abund_comp $Compared <- c("Abundance of sounds - Species abundance",
sound_abund_comp"Abundance of sounds - Species diversity",
"Abundance of sounds - Species richness")
kable(sound_abund_comp, format = "html", digits = 2) %>%
kable_styling(c("strip", "condensed"))
Compared | Estimate | SE | CI.lb | CI.ub | ||
---|---|---|---|---|---|---|
Abundance of sounds - Species abundance | 0.34 | 0.21 | -0.08 | 0.76 | 2.53 | 0.11 |
Abundance of sounds - Species diversity | 0.30 | 0.17 | -0.03 | 0.64 | 3.09 | 0.08 |
Abundance of sounds - Species richness | 0.26 | 0.15 | -0.03 | 0.55 | 3.13 | 0.08 |
We assessed publication bias both, visually (with funnel plots) and statistically (with Egger’s regression).
A funnel plot usually shows the relationship between effect sizes and standard errors. In a symmetric funnel plot, the dispersion of effect sizes should get narrower as standard error decreases.
Due to the multilevel structure of our data set, we used meta-analytic residuals instead of effect sizes to reduce the effect of independence assumptions. We should consider publication bias as an issue if residuals are outside the expected symmetry of the funnel shape, and if some of the funnel sections do not contain any residual.
To statistically test for funnel plot symmetry, we used Egger’s regression with no intercept. A non-significant inverse variance weighted regression of the residuals over the standard error, indicates that the deviation of the residuals from the funnel plot shape is not greater than what would be expected by chance in a symmetric funnel plot.
# Testing model residuals
<- rstandard(res_full)
resid <- regtest(x = resid$resid, sei =sqrt(df_full$var), model = "lm") eggers
funnel(res_full,
back = "white",
xlab = "Model residuals",
ylab = "Effect size standard error",
pch = 21,
col = "darkblue",
cex = 1.2,
cex.lab = 1.3,
cex.axis = 1.1,
lwd = 2
)# Put eggers regression results on funnel plot
<- round(eggers$pval, 2)
eggers_round <- paste0("Regression test for plot symmetry \n\t\t p = ", eggers_round, "\n\n")
plt_text legend(legend = plt_text, x = 0.5, y = -0.01, bg = alpha("darkgrey", 0.2))
Figure 7 - Funnel plot (dashed triangle) with the relation between model residuals from the meta-regression model, and effect size standard error. Absence of publication bias is represented by a scattered and symmetric distribution of values (blue hollow dots) within the funnel. The box on the top right is the p-value from Egger’s regression, which means that we failed to reject the null hypothesis of funnel symmetry (p = 0.53).
$fit eggers
##
## Call:
## lm(formula = yi ~ X - 1, weights = 1/vi)
##
## Coefficients:
## X Xsei
## -0.1235 0.1538
We could not find strong indications of publication bias. Notwithstanding the visual inspection of the funnel plot shows that there are some gaps in the dispersion of the dots in the funnel plot (special at the top, and at the bottom left corner).
Pseudoreplicated designs were widespread in our selected studies (40% of the articles). Therefore, to determine the influence of effect size estimates from pseudoreplicated studies in our meta-analysis, we contrasted the effect size estimate for pseudoreplicated and non-pseudoreplicated studies. For this we conducted a meta-analysis with pseudoreplication as the single binary moderator and observed if the resulting estimate of the contrast between both type of studies overlapped zero.
Meta-analysis with pseudoreplication moderator<- capture.output({
no_out <- clear_moderators(df_tidy, "pseudoreplication")
df_pseudorep
})
<- rma.mv(z, var, random = ~1 | id/entry, mods = ~ pseudoreplication,
res_pseudorep data = df_pseudorep)
res_pseudorep
##
## Multivariate Meta-Analysis Model (k = 364; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0508 0.2254 34 no id
## sigma^2.2 0.1754 0.4188 364 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 362) = 2176.1806, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4077, p-val = 0.5231
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3759 0.0713 5.2759 <.0001 0.2363 0.5156 ***
## pseudoreplicationYES -0.0787 0.1232 -0.6385 0.5231 -0.3201 0.1628
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(data = df_pseudorep, aes(x = pseudoreplication, y = z2r(z))) +
geom_boxplot(aes(color = pseudoreplication)) +
geom_jitter(aes(color = pseudoreplication, size = n), width = 0.2, alpha = 0.5) +
geom_hline(yintercept = z2r(res_main$b), color = "chartreuse4", linetype = 2) +
ylab("Effect Size (r)") +
xlab("Pseudoreplicated") +
scale_color_brewer(palette = "Set1") +
scale_x_discrete(labels = c("No", "Yes")) +
coord_flip() +
theme_minimal() +
theme(legend.position = "none",
axis.text.y = element_text(size = 12, color = "black"),
axis.text.x = element_text(size = 11, color = "black"),
axis.title.y = element_text(size = 14),
axis.title.x = element_text(size = 12),
axis.line.x = element_line(color = "black")
)
Web Supplementary Figure 1 - Boxplot comparing effect size mean values of sampling designs considered pseudoreplicated (“Yes” on the vertical axis) against sampling designs not considered pseudoreplicated (“No” on the vertical axis). The circles represent each individual effect size mean value, and the circle size indicates the relative sample size of the effect size. The dashed green vertical line shows the position of summary effect size obtained from the intercept only meta-analysis.
We failed to find differences between the estimates of pseudoreplicated and non-pseudoreplicated designs. Thus, in general, pseudoreplicated studies provided effect sizes similar to non-pseudoreplicated studies.
We visually inspected the presence of outlier studies using Cook’s distance clustered by studies. The Cook’s distance for a given study, refers to how far, on average, effect size estimates will move if the study in question is dropped from model fitting (Viechtbauer & Cheung, 2010). We considered a study an outlier if its Cook’s distance was higher than the average of all computed Cook’s distances.
### Cook's distances for each study!
<- cooks.distance(res_full, cluster=df_full$id)
cooks_dist $id <- as.character(df_full$id)
df_full
<- data.frame(id = names(cooks_dist), cooks_dist = cooks_dist)
df_cooks
<- df_cooks %>%
df_cooks left_join(df_full, by = "id") %>%
select(id, authors, cooks_dist)
# Remove leading spaces
$authors <- str_remove(df_cooks$authors, "^\\s")
df_cooks<- df_cooks %>%
df_cooks filter(!duplicated(authors)) %>%
arrange(authors)
$authors <- author_format(df_cooks$authors)
df_cooks
ggplot(data = df_cooks, aes(x = authors, y = cooks_dist, group = 1)) +
geom_point(color = "deepskyblue4") +
geom_line(color = "deepskyblue4") +
geom_segment(aes(xend=authors), yend = 0, color = "darkgrey", linetype = 2) +
geom_hline(yintercept = mean(cooks_dist), color = "darkred", linetype = 2) +
xlab("Studies") + ylab("Cook\u2019s distance") +
scale_x_discrete(limits = rev(df_cooks$authors)) +
theme_minimal() +
theme(
axis.line = element_line(color = "black"),
axis.text.y = element_markdown(color = "black", size = 12),
axis.title.y = element_markdown(color = "black", size = 16),
axis.text.x = element_text(color = "black", size = 12),
axis.title.x = element_markdown(color = "black", size = 16),
+
) coord_flip()
Figure S5 - Cook’s distance values for each study (blue dots) and average Cook’s distance over all studies (dashed vertical red line). The Cook’s distance for a given study can be interpreted as the distance between the entire set of predicted values once with this study included and once with this study excluded from the model fitting procedure. On the y-axis are the studies identified by first author and year. The x-axis corresponds to the Cook’s distance values.
Here, we examine outlier studies to discriminate possible reasons for their influence.
<- df_cooks[which(df_cooks$cooks_dist > mean(df_cooks$cooks_dist)), ]$id
outliers
<- df_full[which(df_full$id %in% outliers), ]
df_outliers
ggplot(data = df_outliers, aes(x = z2r(z), y = id)) +
geom_boxplot(aes(color = id), fill = NA, width = 0.3) +
geom_jitter(height = 0.1, aes(color = id)) +
scale_color_brewer(palette = "Set2") +
scale_y_discrete(labels = rev(unique(df_outliers$authors))) +
xlab("Effect size (r)") +
geom_vline(xintercept = z2r(res_main$b), color = "chartreuse4", linetype = 2) +
theme_minimal() +
theme(
axis.title.y = element_blank(),
axis.text.y = element_text(size = 11, color = "black"),
axis.text.x = element_text(size = 11, color = "black"),
axis.title.x = element_text(size = 13),
axis.line.x = element_line(color = "black"),
legend.position = "none"
)
Figure S6 - Boxplot and distribution of effect size values (dots) of the two studies identified as outliers. The y-axis identifies the study, and the x-axis corresponds to the Pearson r effect size. The green vertical dashed line is the summary effect obtained in the intercept-only model.
Both outlier studies used birds as their studied organism, and assessed multiple acoustic indices (Gage et al. (2017) examined ACI, ADI, AEI, BIO, H, NDSI indices; and Mammides et al. (2017) examined ACI, ADI, AEI, AR, BIO, H, NDSI indices). The main difference was that Gage et al. (2017) used acoustic recordings to get biodiversity measures while Mammides et al. (2017) relied on non-acoustic sources of biodiversity information.
The box plots and effect size dispersion, suggest that the study by Gage et al. (2017) contributed overdispersed effect sizes values, including some at the lower and higher ends of the Pearson effect size scale [-1, 1].
The Mammides et al. (2017) study contributed a total 84 effect sizes, also dispersed over a wide range. The number of effect sizes per se (23% of total effect sizes) could be responsible for its high value of Cook’s distance.
We evaluated the robustness of our results by removing the outliers from the data set and running the meta-regression model without the outlier studies.
Meta-analysis with outliers removed<- df_full[-which(df_full$id %in% outliers), ]
df_no_outliers
<- rma.mv(z, var, random = ~1 | id/entry,
res_no_outliers mods = ~ index + bio + environ + diversity_source,
data = df_no_outliers)
res_no_outliers
##
## Multivariate Meta-Analysis Model (k = 200; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.1225 0.3500 31 no id
## sigma^2.2 0.0557 0.2360 200 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 188) = 472.4368, p-val < .0001
##
## Test of Moderators (coefficients 2:12):
## QM(df = 11) = 6.3074, p-val = 0.8521
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.6457 0.1870 3.4522 0.0006 0.2791 1.0123
## indexADI -0.2059 0.1118 -1.8412 0.0656 -0.4251 0.0133
## indexAEI -0.0753 0.1260 -0.5977 0.5500 -0.3224 0.1717
## indexAR -0.0770 0.2082 -0.3700 0.7114 -0.4850 0.3310
## indexBIO -0.0992 0.1192 -0.8319 0.4054 -0.3328 0.1345
## indexH -0.0357 0.1058 -0.3372 0.7360 -0.2430 0.1716
## indexNDSI -0.0164 0.1406 -0.1165 0.9073 -0.2919 0.2591
## bioabundance -0.1566 0.1512 -1.0355 0.3005 -0.4530 0.1398
## biodiversity -0.1064 0.1298 -0.8199 0.4122 -0.3607 0.1479
## biosound_abundance 0.1597 0.2105 0.7587 0.4480 -0.2528 0.5722
## environA -0.1907 0.2057 -0.9271 0.3539 -0.5939 0.2125
## diversity_sourceacoustic -0.1379 0.1909 -0.7226 0.4700 -0.5120 0.2362
##
## intrcpt ***
## indexADI .
## indexAEI
## indexAR
## indexBIO
## indexH
## indexNDSI
## bioabundance
## biodiversity
## biosound_abundance
## environA
## diversity_sourceacoustic
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# With outliers results from full model results
$df <- "with_outliers"
df_pred# No outliers resuls in dataframe
<- get_predictions(res_no_outliers)
df_no_outliers_plt $moderators <- df_pred$moderators
df_no_outliers_plt$coef <- factor(df_pred$coef,
df_no_outliers_pltlevels = rev(df_pred$coef))
$df <- "no_outliers"
df_no_outliers_plt
<- rbind(df_pred, df_no_outliers_plt)
df_examine_outliers
<- c("skyblue4", "goldenrod3")#"seagreen")
plt_colors <- position_dodge(0.6)
pd <- nrow(res_full$b)
n_rows
ggplot(data = df_examine_outliers, aes(x = estimate, y = coef, color = df, position = df)) +
geom_point(position = pd, size = 2.3) +
geom_errorbarh(aes(xmin = ci.lb, xmax = ci.ub), height = 0, position = pd, size = 0.8) +
geom_vline(xintercept = 0, linetype = 1, color = "black") +
#scale_y_discrete(labels = rev(y_labels)) +
scale_color_manual(values = plt_colors, name = "Data set",
labels = c("No outliers", "Full data set")) +
geom_hline(yintercept= seq(1, n_rows - 1) + 0.5, linetype = 3, color = "black") +
theme_minimal() +
xlab("Effect size (r)") +
theme(axis.text.x = element_text(size = 12, color = "black"),
axis.text.y = element_text(size = 13, color = "black"),
axis.line.x = element_line(color = "black"),
axis.line.y = element_line(color = "black"),
axis.title.y = element_blank(),
axis.title.x = element_text(size = 14),
panel.grid.major.y = element_blank(),
legend.title = element_text(hjust = 0.5, size = 12),
legend.text = element_text(size = 11)
)
Figure S7 - Contrast of model estimates obtained with meta-regression analysis over the full data set (yellow) and over the data set with outliers removed (blue). Estimates are represented with circles and corresponding 95% confidence intervals with horizontal lines. Each estimate corresponds to the additive effect when a moderator level is replaced in the intercept (e.g. ADI is the additive effect of ADI when ADI is put as intercept instead of ACI). Estimated effect sizes whose 95% confidence intervals do not overlap zero (black vertical line) indicate a positive correlation between acoustic indices and diversity if they are to the right of zero, or a negative correlation if they are to the left of zero. We considered outliers every study that had a Cook’s distance value higher than the mean of all Cook distances. Model moderators were acoustic indices (ADI, AEI, AR, BIO, H, NDSI, with ACI as intercept), diversity metric (Species abundance, Species diversity, Abundance of sounds, with Species richness as intercept), environment (Aquatic, with Terrestrial as intercept), diversity source (Acoustic, with Non-Acoustic as intercept). The solid vertical black line represents a null effect size.
The results are similar with major overlap between confidence intervals, especially for the most conclusive results in the full data set. It seems that removing outliers tended to generate stronger mean effect size estimates of the correlation between acoustic indices and biodiversity.
Heterogeneity for the intercept-only model with no outliers<- rma.mv(z, var, random = ~1 | id/entry, data = df_no_outliers)
res_main_no_outliers
<- multilevel_I(res_main_no_outliers)
Is_no_outliers
sum(Is_no_outliers)
## [1] 0.8256989
We visually inspected tendencies in the effect size over the year of publication, and impact factor of the journal.
We observed a tendency of effect size values to decrease over the years, which is distinctive from 2007 to 2015 and 2015-2019, where the latter period saw a surge in the number of published studies.
<- rma.mv(z, var, random = ~ 1 | id/entry, mods = ~ year, data = df_tidy)
lin lin
##
## Multivariate Meta-Analysis Model (k = 364; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0159 0.1262 34 no id
## sigma^2.2 0.1707 0.4132 364 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 362) = 2191.0423, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 22.7659, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 220.9027 46.2337 4.7780 <.0001 130.2862 311.5192 ***
## year -0.1094 0.0229 -4.7714 <.0001 -0.1543 -0.0644 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#print(z2r(coefficients(lin)))
#print(z2r(lin$ci.lb))
#print(z2r(lin$ci.ub))
<- "darkorchid4"
plt_color
<- predict(lin, interval = "confidence")
preds $y <- z2r(preds$pred)
df_tidy$ymin <- z2r(preds$ci.lb)
df_tidy$ymax<- z2r(preds$ci.ub)
df_tidy
<- range(df_tidy$year)
xs <- z2r((cbind(1, xs) %*% lin$b))
ys
ggplot(df_tidy, aes(x = year, y = z2r(z))) +
#geom_segment(aes(x = xs[1], xend = xs[2], y = ys[1], yend = ys[2]), color = plt_color, size = 0.3, linetype = "dashed") +
geom_jitter(aes(size = n), shape = 21,
fill = alpha(plt_color, 0.5),
color = plt_color) +
geom_hline(yintercept=0, linetype = 2) +
geom_line(aes(y = y, x = year), color = plt_color) +
geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.3) +
labs(y = "Effect size (r)", x = "Publication Year") +
scale_x_continuous(breaks = seq(min(df_tidy$year),
max(df_tidy$year), by = 2)) +
theme_minimal() +
theme(
axis.line.y = element_line(color = "black"),
axis.text = element_text(color = "black", size = 12),
axis.title = element_text(color = "black", size = 14),
legend.position = "none"
)
Figure 8A - Relationship between effect size mean values (circles) and publication year after 2015 (inclusive). Circle size indicates the relative sample size for each effect size. The fitted line is a meta-regression over the year of publication with the corresponding 95% confidence interval region shaded grey. The dashed horizontal line represents an effect size of 0. Effect size mean values are positioned along the impact factor axis with minor random noise to reduce overlapping. Model statistics in Pearson correlation r estimate [CI], intercept 1.000 [1.000, 1.000], slope -0.109 [-0.153, -0.064]. The computed model is a linear model using Fisher’s Z as effect size. The transformation from Fisher’s Z unbounded values to Pearson correlation values bounded between -1 and 1 creates the curved pattern for larger effect sizes.
The tendency continues less pronounced from 2015 to 2019. As our knowledge on acoustic indices progresses, larger limitations on the capacity of these tools to efficiently quantify local biodiversity are revealed. Thus, together with the rapid spread of these indices, additional efforts are required to better understand the significance, interpretation, and efficient use of these indices in biodiversity appraisal (Gasc et al., 2015)
<- df_tidy[df_tidy$year >= 2015, ]
df_tidy_after2015 <- rma.mv(z, var, random = ~ 1 | id/entry, mods = ~ year, data = df_tidy_after2015)
lin lin
##
## Multivariate Meta-Analysis Model (k = 351; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0175 0.1323 25 no id
## sigma^2.2 0.1720 0.4148 351 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 349) = 2099.2807, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.8158, p-val = 0.0508
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 164.8134 84.2411 1.9564 0.0504 -0.2962 329.9230 .
## year -0.0816 0.0418 -1.9534 0.0508 -0.1634 0.0003 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#print(z2r(coefficients(lin)))
#print(z2r(lin$ci.lb))
#print(z2r(lin$ci.ub))
<- predict(lin, interval = "confidence")
preds $y <- z2r(preds$pred)
df_tidy_after2015$ymin <- z2r(preds$ci.lb)
df_tidy_after2015$ymax<- z2r(preds$ci.ub)
df_tidy_after2015
ggplot(df_tidy_after2015, aes(x = year, y = z2r(z))) +
geom_jitter(aes(size = n), shape = 21,
fill = alpha(plt_color, 0.5),
color = plt_color) +
geom_hline(yintercept=0, linetype = 2) +
geom_line(aes(y = y, x = year), color = plt_color) +
geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.3) +
labs(y = expression(paste("Effect size (", italic("r"), ")")), x = "Publication Year") +
scale_x_continuous(limits = c(2015, 2019),
breaks = seq(min(df_tidy_after2015$year),
max(df_tidy_after2015$year),
by = 1)) +
theme_minimal() +
theme(
axis.line.y = element_line(color = "black"),
axis.text = element_text(color = "black", size = 12),
axis.title = element_text(color = "black", size = 14),
legend.position = "none"
)
Figure 8B - Relationship between effect size mean values (circles) and publication year after 2015 (inclusive). Circle size indicates the relative sample size for each effect size. The fitted line is a meta-regression over the year of publication with the corresponding 95% confidence interval region shaded grey. The dashed horizontal line represents an effect size of 0. Effect size mean values are positioned along the impact factor axis with minor random noise to reduce overlapping. Model statistics in Pearson correlation r estimate [CI], intercept 1.000 [-0.289, 1.000], slope -0.081 [-0.162, 0.000].
Effect size values do not appear to exhibit a tendency when it comes to journal impact factor.
<- filter(df_tidy, !is.na(impact_factor))
df_tidy_if <- rma.mv(z, var, random = ~ 1 | id/entry, mods = ~ impact_factor, data = df_tidy_if)
lin lin
##
## Multivariate Meta-Analysis Model (k = 316; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0475 0.2180 32 no id
## sigma^2.2 0.1713 0.4139 316 no id/entry
##
## Test for Residual Heterogeneity:
## QE(df = 314) = 2062.4310, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0745, p-val = 0.7850
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4249 0.1652 2.5714 0.0101 0.1010 0.7487 *
## impact_factor -0.0125 0.0457 -0.2729 0.7850 -0.1021 0.0772
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#print(z2r(coefficients(lin)))
#print(z2r(lin$ci.lb))
#print(z2r(lin$ci.ub))
<- predict(lin, interval = "confidence")
preds $y <- z2r(preds$pred)
df_tidy_if$ymin <- z2r(preds$ci.lb)
df_tidy_if$ymax<- z2r(preds$ci.ub)
df_tidy_if
<- "deeppink4"
plt_color ggplot(df_tidy_if, aes(x = impact_factor, y = z2r(z))) +
geom_jitter(aes(size = n), shape = 21,
fill = alpha(plt_color, 0.5),
color = plt_color,
width = 0.2) +
geom_hline(yintercept=0, linetype = 2) +
geom_line(aes(y = y, x = impact_factor), color = plt_color) +
geom_ribbon(aes(ymin = ymin, ymax = ymax), alpha = 0.3) +
labs(y = "Effect size (r)", x = "Impact Factor") +
theme_minimal() +
theme(
axis.line.y = element_line(color = "black"),
axis.text = element_text(color = "black", size = 12),
axis.title = element_text(color = "black", size = 14),
legend.position = "none"
)
Figure S4 - Relationship between effect size mean values (circles) and journal impact factor. Circle size indicates the relative sample size for each effect size. The fitted line is a meta-regression over the journal impact factor with the corresponding 95% confidence interval region shaded grey. The dashed horizontal line represents an effect size of 0. Effect size mean values are positioned along the impact factor axis with minor random noise to reduce overlapping. Model statistics in Pearson correlation r estimate [CI], intercept 0.401 [0.100, 0.164], slope -0.012 [-0.102, 0.077].
All code files and supplementary data used in the study can be found in https://github.com/irene-alcocer/Acoustic-Indices.
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Arch Linux
##
## Matrix products: default
## BLAS: /usr/lib/libopenblasp-r0.3.20.so
## LAPACK: /usr/lib/liblapack.so.3.10.1
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] RColorBrewer_1.1-3 ggtext_0.1.1 ggplot2_3.3.6
## [4] pander_0.6.5 kableExtra_1.3.4.9000 compute.es_0.2-5
## [7] metafor_3.4-0 metadat_1.2-0 Matrix_1.4-1
## [10] stringr_1.4.0 dplyr_1.0.9 png_0.1-7
## [13] knitr_1.39
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.2 xfun_0.31 pbapply_1.5-0
## [4] purrr_0.3.4 lattice_0.20-45 colorspace_2.0-3
## [7] vctrs_0.4.1 generics_0.1.2 htmltools_0.5.2
## [10] viridisLite_0.4.0 yaml_2.2.1 utf8_1.2.2
## [13] rlang_1.0.2 gridtext_0.1.4.9000 pillar_1.7.0
## [16] glue_1.6.2 withr_2.5.0 DBI_1.1.2
## [19] lifecycle_1.0.1 munsell_0.5.0 gtable_0.3.0
## [22] rvest_1.0.2 evaluate_0.15 labeling_0.4.2
## [25] fastmap_1.1.0 parallel_4.2.0 markdown_1.1
## [28] fansi_0.4.1 highr_0.8 Rcpp_1.0.5
## [31] scales_1.2.0 webshot_0.5.3 farver_2.1.0
## [34] systemfonts_1.0.4 digest_0.6.27 stringi_1.7.6
## [37] grid_4.2.0 mathjaxr_1.6-0 cli_3.3.0
## [40] tools_4.2.0 magrittr_2.0.1 tibble_3.1.7
## [43] crayon_1.5.1 pkgconfig_2.0.3 ellipsis_0.3.2
## [46] xml2_1.3.3 assertthat_0.2.1 rmarkdown_2.6
## [49] svglite_2.1.0 httr_1.4.2 rstudioapi_0.13
## [52] R6_2.5.0 nlme_3.1-157 compiler_4.2.0